Optimisation-based identification of parameters in a mathematical model of muscle fatigue

L. Frey-Law, Frank K. UrbanIII
{"title":"Optimisation-based identification of parameters in a mathematical model of muscle fatigue","authors":"L. Frey-Law, Frank K. UrbanIII","doi":"10.1504/ijhfms.2019.102171","DOIUrl":null,"url":null,"abstract":"A number of mathematical muscle fatigue models have been developed; however, the determination of optimal parameter values defining model behaviour is not trivial. Typically, parameter identification relied on estimates of endurance time (ET) for sustained static contractions. However, this is not feasible for more complex tasks, such as intermittent contractions, in which ET is not achieved or reported due to long task durations. Here we present numerical methods, which use multiple time-varying measures of fatigue development to find best-fit fatigue (F) and recovery (R) parameter values for one fatigue model. While we used the three-compartment controller model (3CC), the approach using the Levenberg-Marquardt algorithm could be applied to other fatigue models. This method determines best-fit parameter solutions as those resulting in a minimum least squares difference between measured and modelled data. We present a summary of this approach with two extreme examples with multiple on/off cycle repetitions from the literature to demonstrate determination of the two model parameters, F and R, for each dataset. Thus, the method works with repetitive contractions, utilising multiple data points over time, not just a single endurance time point, as in previous studies.","PeriodicalId":417746,"journal":{"name":"International Journal of Human Factors Modelling and Simulation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Human Factors Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhfms.2019.102171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A number of mathematical muscle fatigue models have been developed; however, the determination of optimal parameter values defining model behaviour is not trivial. Typically, parameter identification relied on estimates of endurance time (ET) for sustained static contractions. However, this is not feasible for more complex tasks, such as intermittent contractions, in which ET is not achieved or reported due to long task durations. Here we present numerical methods, which use multiple time-varying measures of fatigue development to find best-fit fatigue (F) and recovery (R) parameter values for one fatigue model. While we used the three-compartment controller model (3CC), the approach using the Levenberg-Marquardt algorithm could be applied to other fatigue models. This method determines best-fit parameter solutions as those resulting in a minimum least squares difference between measured and modelled data. We present a summary of this approach with two extreme examples with multiple on/off cycle repetitions from the literature to demonstrate determination of the two model parameters, F and R, for each dataset. Thus, the method works with repetitive contractions, utilising multiple data points over time, not just a single endurance time point, as in previous studies.
基于优化的肌肉疲劳数学模型参数辨识
许多肌肉疲劳的数学模型已经被开发出来;然而,确定定义模型行为的最优参数值并非易事。通常,参数识别依赖于持续静态收缩的持久时间(ET)的估计。然而,对于更复杂的任务,如间歇性收缩,由于任务持续时间长,ET无法实现或报告,这是不可行的。在这里,我们提出了数值方法,使用多个时变的疲劳发展措施来找到一个疲劳模型的最佳拟合疲劳(F)和恢复(R)参数值。虽然我们使用了三室控制器模型(3CC),但使用Levenberg-Marquardt算法的方法可以应用于其他疲劳模型。该方法确定最佳拟合参数解为导致测量数据和建模数据之间最小二乘差的解。我们用两个极端的例子对这种方法进行了总结,这些例子中有多个开/关周期的重复,以演示每个数据集的两个模型参数F和R的确定。因此,该方法适用于重复收缩,利用多个数据点随时间推移,而不仅仅是一个单一的耐力时间点,就像以前的研究一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信