Bistable Actuators Based on Shape Memory Alloy/ Polymer Composites

Sabrina M. Curtis, Duygu Dengiz, P. Velvaluri, L. Bumke, E. Quandt, M. Sielenkämper, S. Wulfinghoff, Gowtham Arivanandhan, Zixiong Li, M. Kohl
{"title":"Bistable Actuators Based on Shape Memory Alloy/ Polymer Composites","authors":"Sabrina M. Curtis, Duygu Dengiz, P. Velvaluri, L. Bumke, E. Quandt, M. Sielenkämper, S. Wulfinghoff, Gowtham Arivanandhan, Zixiong Li, M. Kohl","doi":"10.31399/asm.cp.smst2022p0001","DOIUrl":null,"url":null,"abstract":"The thermal induced martensitic phase transition in TiNiHf was exploited for bi-directional actuation with TiNiHf/SiO2/Si composites. When compared to free-standing films of similar thickness, films on a substrate exhibit a reduced fatigue effect upon thermal cycling and a smaller hysteresis width. Differential scanning calorimetry (DSC) and cantilever deflection measurements (CDM) results showed that the transition temperatures of fabricated TiNiHf films and TiNiHf/SiO2/Si bimorph composites decrease with thermal cycling. The change in transition temperatures after 40 thermal cycles is significantly reduced for TiNiHf films bound to a SiO2/Si substrate compared to the functional fatigue DSC results reported for freestanding films. The thermal hysteresis width is also reduced for TiNiHf films constrained by SiO2/Si and Si substrates compared to freestanding films of similar thicknesses. With proper composition selection and microstructural control, TiNiHf films can be promising SMA films for bistable actuators with PMMA/TiNiHf/Si composites.","PeriodicalId":119283,"journal":{"name":"SMST 2022: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMST 2022: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.smst2022p0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The thermal induced martensitic phase transition in TiNiHf was exploited for bi-directional actuation with TiNiHf/SiO2/Si composites. When compared to free-standing films of similar thickness, films on a substrate exhibit a reduced fatigue effect upon thermal cycling and a smaller hysteresis width. Differential scanning calorimetry (DSC) and cantilever deflection measurements (CDM) results showed that the transition temperatures of fabricated TiNiHf films and TiNiHf/SiO2/Si bimorph composites decrease with thermal cycling. The change in transition temperatures after 40 thermal cycles is significantly reduced for TiNiHf films bound to a SiO2/Si substrate compared to the functional fatigue DSC results reported for freestanding films. The thermal hysteresis width is also reduced for TiNiHf films constrained by SiO2/Si and Si substrates compared to freestanding films of similar thicknesses. With proper composition selection and microstructural control, TiNiHf films can be promising SMA films for bistable actuators with PMMA/TiNiHf/Si composites.
基于形状记忆合金/聚合物复合材料的双稳致动器
利用tinhf /SiO2/Si复合材料的热诱导马氏体相变进行双向驱动。与相同厚度的独立薄膜相比,基底上的薄膜在热循环时表现出较小的疲劳效应和较小的滞后宽度。差示扫描量热法(DSC)和悬臂挠度测量(CDM)结果表明,制备的TiNiHf薄膜和TiNiHf/SiO2/Si双晶复合材料的转变温度随着热循环而降低。与独立薄膜的功能疲劳DSC结果相比,结合在SiO2/Si衬底上的TiNiHf薄膜在40个热循环后的转变温度变化显著降低。与相同厚度的独立薄膜相比,受SiO2/Si和Si衬底约束的tinhf薄膜的热滞后宽度也减小了。通过适当的成分选择和微观结构控制,TiNiHf薄膜可以成为具有PMMA/TiNiHf/Si复合材料的双稳致动器的有前途的SMA薄膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信