Probabilistic Stable Functions on Discrete Cones are Power Series

Raphaëlle Crubillé
{"title":"Probabilistic Stable Functions on Discrete Cones are Power Series","authors":"Raphaëlle Crubillé","doi":"10.1145/3209108.3209198","DOIUrl":null,"url":null,"abstract":"We study the category Cstabm of measurable cones and measurable stable functions---a denotational model of an higher-order language with continuous probabilities and full recursion [7]. We look at Cstabm as a model for discrete probabilities, by showing the existence of a cartesian closed, full and faithful functor which embeds probabilistic coherence spaces---a fully abstract denotational model of an higher language with full recursion and discrete probabilities [8]---into Cstabm. The proof is based on a generalization of Bernstein's theorem from real analysis allowing to see stable functions between discrete cones as generalized power series.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We study the category Cstabm of measurable cones and measurable stable functions---a denotational model of an higher-order language with continuous probabilities and full recursion [7]. We look at Cstabm as a model for discrete probabilities, by showing the existence of a cartesian closed, full and faithful functor which embeds probabilistic coherence spaces---a fully abstract denotational model of an higher language with full recursion and discrete probabilities [8]---into Cstabm. The proof is based on a generalization of Bernstein's theorem from real analysis allowing to see stable functions between discrete cones as generalized power series.
离散锥上的概率稳定函数是幂级数
我们研究了可测锥和可测稳定函数的范畴cstam——具有连续概率和完全递归的高阶语言的指称模型[7]。我们将Cstabm视为离散概率的模型,通过展示笛卡尔封闭、完整和忠实函子的存在性,该函子将概率相干空间(具有完全递归和离散概率的高级语言的完全抽象指示模型[8])嵌入到Cstabm中。这个证明是基于伯恩斯坦定理从实分析的推广,允许看到离散锥之间的稳定函数作为广义幂级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信