UCOS: Enhanced Online Skyline Computation by User Clustering

Kehan Chen, Lichuan Ji, Kunyang Jia, Jian Wu
{"title":"UCOS: Enhanced Online Skyline Computation by User Clustering","authors":"Kehan Chen, Lichuan Ji, Kunyang Jia, Jian Wu","doi":"10.1109/SCC.2013.14","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a skyline computation system UCOS (User Clustering based Online Skyline), which divides the computation into offline and online stages. Based on the truth that QoS similarity implies the skyline similarity, the offline stage of UCOS system dose user clustering according to the historical user-service QoS records by given distance metrics. Then, we compute the representative skyline for each cluster standing for the general characters of the users' skylines. Benefit from those offline results, the online stage is able to give a rapid prediction for online skyline request and achieves good online computation performance by doing refinement on the predicted results.","PeriodicalId":370898,"journal":{"name":"2013 IEEE International Conference on Services Computing","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Services Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2013.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a skyline computation system UCOS (User Clustering based Online Skyline), which divides the computation into offline and online stages. Based on the truth that QoS similarity implies the skyline similarity, the offline stage of UCOS system dose user clustering according to the historical user-service QoS records by given distance metrics. Then, we compute the representative skyline for each cluster standing for the general characters of the users' skylines. Benefit from those offline results, the online stage is able to give a rapid prediction for online skyline request and achieves good online computation performance by doing refinement on the predicted results.
UCOS:通过用户聚类增强在线天际线计算
本文提出了一种基于用户聚类的在线天际线计算系统UCOS (User Clustering based Online skyline),该系统将计算分为离线和在线两个阶段。基于QoS相似度意味着天际线相似度的事实,UCOS系统的离线阶段根据给定距离度量的历史用户服务QoS记录进行用户聚类。然后,我们计算代表用户天际线一般特征的每个集群的代表性天际线。利用这些离线结果,在线阶段能够对在线天际线请求进行快速预测,并通过对预测结果进行细化,获得良好的在线计算性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信