Developing an Agent-Based Model for Haplodrassus rufipes (Araneae: Gnaphosidae), a Generalist Predator Species of Olive Tree Pests: Conceptual Model Outline
R. Barreira, M. C. Paz, L. Amaro, José Eduardo Bruno de Sousa, J. Benhadi‐Marín, Mikola Rasko, A. Silva, Joana Alves, A. Chuhutin, C. Topping, S. Santos
{"title":"Developing an Agent-Based Model for Haplodrassus rufipes (Araneae: Gnaphosidae), a Generalist Predator Species of Olive Tree Pests: Conceptual Model Outline","authors":"R. Barreira, M. C. Paz, L. Amaro, José Eduardo Bruno de Sousa, J. Benhadi‐Marín, Mikola Rasko, A. Silva, Joana Alves, A. Chuhutin, C. Topping, S. Santos","doi":"10.3390/IECPS2020-08745","DOIUrl":null,"url":null,"abstract":": Olive growing has been facing major sustainability challenges due to intensification, resulting in an increased use of pesticides and fertilizers and, consequently, in the depletion of natural resources and loss of biodiversity and landscape values. This has created an urgent need to develop models for managing complex agroecosystems that integrate factors affecting food quality, sustainability and biodiversity, providing a supporting technique to understand the consequences of agricultural management for ecosystem services. We are developing an advanced agent-based simulation (ABS) applied to olive groves to model the effects of farming practices on the abundance of olive pest predators. ABS is a modeling technique where agents represent animals (predator arthropods, in our case) acting in their environment. Our model is based on an ABS system developed by Aarhus University, the ALMaSS, which comprises highly detailed farm management and spatial structures to construct dynamic landscapes where agents operate. In this work, we present the conceptual model for one of the selected species, Haplodrassus rufipes (Araneae: Gnaphosidae).","PeriodicalId":437745,"journal":{"name":"Proceedings of The 1st International Electronic Conference on Plant Science","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 1st International Electronic Conference on Plant Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/IECPS2020-08745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
: Olive growing has been facing major sustainability challenges due to intensification, resulting in an increased use of pesticides and fertilizers and, consequently, in the depletion of natural resources and loss of biodiversity and landscape values. This has created an urgent need to develop models for managing complex agroecosystems that integrate factors affecting food quality, sustainability and biodiversity, providing a supporting technique to understand the consequences of agricultural management for ecosystem services. We are developing an advanced agent-based simulation (ABS) applied to olive groves to model the effects of farming practices on the abundance of olive pest predators. ABS is a modeling technique where agents represent animals (predator arthropods, in our case) acting in their environment. Our model is based on an ABS system developed by Aarhus University, the ALMaSS, which comprises highly detailed farm management and spatial structures to construct dynamic landscapes where agents operate. In this work, we present the conceptual model for one of the selected species, Haplodrassus rufipes (Araneae: Gnaphosidae).