Automatic generation of robot program code: learning from perceptual data

M. Yeasin, S. Chaudhuri
{"title":"Automatic generation of robot program code: learning from perceptual data","authors":"M. Yeasin, S. Chaudhuri","doi":"10.1109/ICCV.1998.710822","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to program a robot by demonstrating the task multiple number of times in front of a vision system. Here we integrate human dexterity with sensory data using computer vision techniques in a single platform. A simultaneous feature detection and tracking framework is used to track various features (finger tips and the wrist joint). A Kalman filter does the tracking by predicting the tentative feature location and a HOS-based data clustering algorithm extracts the feature. Color information of the features are used for establishing correspondences. A fast, efficient and robust algorithm for the vision system thus developed process a binocular video sequence to obtain the trajectories and the orientation information of the end effector. The concept of a trajectory bundle is introduced to avoid singularities and to obtain an optimal path.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"35 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose a novel approach to program a robot by demonstrating the task multiple number of times in front of a vision system. Here we integrate human dexterity with sensory data using computer vision techniques in a single platform. A simultaneous feature detection and tracking framework is used to track various features (finger tips and the wrist joint). A Kalman filter does the tracking by predicting the tentative feature location and a HOS-based data clustering algorithm extracts the feature. Color information of the features are used for establishing correspondences. A fast, efficient and robust algorithm for the vision system thus developed process a binocular video sequence to obtain the trajectories and the orientation information of the end effector. The concept of a trajectory bundle is introduced to avoid singularities and to obtain an optimal path.
机器人程序代码的自动生成:从感知数据中学习
我们提出了一种新颖的方法,通过在视觉系统前多次演示任务来编程机器人。在这里,我们将人类的灵巧性与感官数据结合使用计算机视觉技术在一个单一的平台。同时使用特征检测和跟踪框架来跟踪各种特征(指尖和腕关节)。卡尔曼滤波器通过预测暂定特征位置来进行跟踪,基于hos的数据聚类算法提取特征。特征的颜色信息用于建立对应关系。为此,提出了一种快速、高效、鲁棒的视觉系统算法,对双目视频序列进行处理,获得末端执行器的轨迹和方向信息。引入轨迹束的概念,避免了奇异性,得到了最优路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信