Arabic speech recognition using MFCC feature extraction and ANN classification

E. S. Wahyuni
{"title":"Arabic speech recognition using MFCC feature extraction and ANN classification","authors":"E. S. Wahyuni","doi":"10.1109/ICITISEE.2017.8285499","DOIUrl":null,"url":null,"abstract":"This research addresses a challenging issue that is to recognize spoken Arabic letters, that are three letters of hijaiyah that have indentical pronounciation when pronounced by Indonesian speakers but actually has different makhraj in Arabic, the letters are sa, sya and tsa. The research uses Mel-Frequency Cepstral Coefficients (MFCC) based feature extraction and Artificial Neural Network (ANN) classification method. The result shows the proposed method obtain a good accuracy with an average acuracy is 92.42%, with recognition accuracy each letters (sa, sya, and tsa) prespectivly 92.38%, 93.26% and 91.63%.","PeriodicalId":130873,"journal":{"name":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITISEE.2017.8285499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

This research addresses a challenging issue that is to recognize spoken Arabic letters, that are three letters of hijaiyah that have indentical pronounciation when pronounced by Indonesian speakers but actually has different makhraj in Arabic, the letters are sa, sya and tsa. The research uses Mel-Frequency Cepstral Coefficients (MFCC) based feature extraction and Artificial Neural Network (ANN) classification method. The result shows the proposed method obtain a good accuracy with an average acuracy is 92.42%, with recognition accuracy each letters (sa, sya, and tsa) prespectivly 92.38%, 93.26% and 91.63%.
基于MFCC特征提取和ANN分类的阿拉伯语语音识别
本研究解决了一个具有挑战性的问题,即识别阿拉伯语口语字母,即hijaiyah的三个字母,在印度尼西亚人发音时具有相同的发音,但实际上在阿拉伯语中具有不同的makhraj,字母是sa, sya和tsa。研究采用基于Mel-Frequency倒谱系数(MFCC)的特征提取和人工神经网络(ANN)分类方法。结果表明,该方法获得了较好的准确率,平均准确率为92.42%,其中每个字母(sa、sya和tsa)的识别准确率分别为92.38%、93.26%和91.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信