Ehtsham Rasool, Muhammad Junaid Anwar, Bilawal Shaker, Muhammad Harris Hashmi, K. Rehman, Yousaf Seed
{"title":"Breast Microcalcification detection in digital mammograms using Deep Transfer learning approaches","authors":"Ehtsham Rasool, Muhammad Junaid Anwar, Bilawal Shaker, Muhammad Harris Hashmi, K. Rehman, Yousaf Seed","doi":"10.1145/3589845.3589849","DOIUrl":null,"url":null,"abstract":"Breast cancer is the most often diagnosed cancer in women affecting one in eight at the age of 80 in US. Breast is the most threatening cancer among women which leads to death. Early diagnosis of breast cancer can save their lives which decreases the mortality rate. Mammography is a standard screening method for breast cancer diagnosis that identifies occurrences of breast cancer in women`s at early stages without symptoms. In this study, we employed transfer learning in deep learning to increase the neural network's performance and reduce the false positive rate. In addition, we proposed a pre-trained VGG-19 neural network to extract features of individual microcalcification to predict breast cancer. The proposed method was evaluated on two public databases the CBIS-DDSM and DDSM and achieved 0.98 sensitivities respectively. The proposed method obtained higher sensitivity than other residual neural networks and previous studies.","PeriodicalId":302027,"journal":{"name":"Proceedings of the 2023 9th International Conference on Computing and Data Engineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 9th International Conference on Computing and Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589845.3589849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is the most often diagnosed cancer in women affecting one in eight at the age of 80 in US. Breast is the most threatening cancer among women which leads to death. Early diagnosis of breast cancer can save their lives which decreases the mortality rate. Mammography is a standard screening method for breast cancer diagnosis that identifies occurrences of breast cancer in women`s at early stages without symptoms. In this study, we employed transfer learning in deep learning to increase the neural network's performance and reduce the false positive rate. In addition, we proposed a pre-trained VGG-19 neural network to extract features of individual microcalcification to predict breast cancer. The proposed method was evaluated on two public databases the CBIS-DDSM and DDSM and achieved 0.98 sensitivities respectively. The proposed method obtained higher sensitivity than other residual neural networks and previous studies.