{"title":"Multiobjective multicast routing algorithm for traffic engineering","authors":"J. Crichigno, B. Barán","doi":"10.1109/ICCCN.2004.1401652","DOIUrl":null,"url":null,"abstract":"This paper presents a new version of a multiobjective multicast routing algorithm (MMA) for traffic-engineering, based on the strength Pareto evolutionary algorithm (SPEA), which simultaneously optimizes the maximum link utilization, the cost of the tree, the maximum end-to-end delay and the average delay. In this way, a set of optimal solutions, known as Pareto set, is calculated in only one run, without a priori restrictions. Simulation results show that MMA is able to find Pareto optimal solutions. They also show that for dynamic multicast routing, where the traffic requests arrive one after another, MMA outperforms other known algorithms","PeriodicalId":229045,"journal":{"name":"Proceedings. 13th International Conference on Computer Communications and Networks (IEEE Cat. No.04EX969)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 13th International Conference on Computer Communications and Networks (IEEE Cat. No.04EX969)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2004.1401652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63
Abstract
This paper presents a new version of a multiobjective multicast routing algorithm (MMA) for traffic-engineering, based on the strength Pareto evolutionary algorithm (SPEA), which simultaneously optimizes the maximum link utilization, the cost of the tree, the maximum end-to-end delay and the average delay. In this way, a set of optimal solutions, known as Pareto set, is calculated in only one run, without a priori restrictions. Simulation results show that MMA is able to find Pareto optimal solutions. They also show that for dynamic multicast routing, where the traffic requests arrive one after another, MMA outperforms other known algorithms