Live Video Action Recognition from Unsupervised Action Proposals

Roberto J. Lópcz-Sastrc, Marcos Baptista-Ríos, F. J. Acevedo-Rodríguez, P. Martín-Martín, S. Maldonado-Bascón
{"title":"Live Video Action Recognition from Unsupervised Action Proposals","authors":"Roberto J. Lópcz-Sastrc, Marcos Baptista-Ríos, F. J. Acevedo-Rodríguez, P. Martín-Martín, S. Maldonado-Bascón","doi":"10.23919/MVA51890.2021.9511355","DOIUrl":null,"url":null,"abstract":"The problem of action detection in untrimmed videos consists in localizing those parts of a certain video that can contain an action. Typically, state-of-the-art approaches to this problem use a temporal action proposals (TAPs) generator followed by an action classifier module. Moreover, TAPs solutions are learned from a supervised setting, and need the entire video to be processed to produce effective proposals. These properties become a limitation for certain real applications in which a system requires to know the content of the video in an online fashion. To do so, in this work we introduce a live video action detection application which integrates the action classifier step with an unsupervised and online TAPs generator. We evaluate, for the first time, the precision of this novel pipeline for the problem of action detection in untrimmed videos. We offer a thorough experimental evaluation in Activi-tyNet dataset, where our unsupervised model can compete with the state-of-the-art supervised solutions.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of action detection in untrimmed videos consists in localizing those parts of a certain video that can contain an action. Typically, state-of-the-art approaches to this problem use a temporal action proposals (TAPs) generator followed by an action classifier module. Moreover, TAPs solutions are learned from a supervised setting, and need the entire video to be processed to produce effective proposals. These properties become a limitation for certain real applications in which a system requires to know the content of the video in an online fashion. To do so, in this work we introduce a live video action detection application which integrates the action classifier step with an unsupervised and online TAPs generator. We evaluate, for the first time, the precision of this novel pipeline for the problem of action detection in untrimmed videos. We offer a thorough experimental evaluation in Activi-tyNet dataset, where our unsupervised model can compete with the state-of-the-art supervised solutions.
来自无监督动作提案的实时视频动作识别
未修剪视频中的动作检测问题在于对某个视频中可能包含动作的部分进行本地化。通常,解决此问题的最先进的方法使用临时操作建议(tap)生成器,然后是操作分类器模块。此外,TAPs解决方案是从有监督的环境中学习的,并且需要对整个视频进行处理以产生有效的建议。这些属性成为某些实际应用的限制,其中系统需要以在线方式了解视频的内容。为此,在这项工作中,我们介绍了一个实时视频动作检测应用程序,该应用程序将动作分类器步骤与无监督的在线TAPs生成器集成在一起。我们首次评估了这种新管道在未修剪视频中动作检测问题的精度。我们在actii - tynet数据集中提供了一个彻底的实验评估,其中我们的无监督模型可以与最先进的有监督解决方案竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信