STK-anonymity: k-anonymity of social networks containing both structural and textual information

Yifan Hao, H. Cao, K. Bhattarai, S. Misra
{"title":"STK-anonymity: k-anonymity of social networks containing both structural and textual information","authors":"Yifan Hao, H. Cao, K. Bhattarai, S. Misra","doi":"10.1145/2484702.2484707","DOIUrl":null,"url":null,"abstract":"We study the problem of anonymizing social networks to prevent individual identifications which use both structural (node degrees) and textual (edge labels) information in social networks. We introduce the concept of Structural and Textual (ST)-equivalence of individuals at two levels (strict and loose), and formally define the problem as Structure and Text aware K-anonymity of social networks (STK-Anonymity). In an STK-anonymized network, each individual is ST-equivalent to at least K-1 other nodes. The major challenge in achieving STK-Anonymity comes from the correlation of edge labels, which causes the propagation of edge anonymization. To address the challenge, we present a two-phase approach. In particular, a set-enumeration tree based approach and three pruning strategies are introduced in the second phase to avoid the propagation problem during anonymization. Experimental results on both real and synthetic datasets are presented to show the effectiveness and efficiency of our approaches.","PeriodicalId":104130,"journal":{"name":"ACM SIGMOD Workshop on Databases and Social Networks","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Workshop on Databases and Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484702.2484707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the problem of anonymizing social networks to prevent individual identifications which use both structural (node degrees) and textual (edge labels) information in social networks. We introduce the concept of Structural and Textual (ST)-equivalence of individuals at two levels (strict and loose), and formally define the problem as Structure and Text aware K-anonymity of social networks (STK-Anonymity). In an STK-anonymized network, each individual is ST-equivalent to at least K-1 other nodes. The major challenge in achieving STK-Anonymity comes from the correlation of edge labels, which causes the propagation of edge anonymization. To address the challenge, we present a two-phase approach. In particular, a set-enumeration tree based approach and three pruning strategies are introduced in the second phase to avoid the propagation problem during anonymization. Experimental results on both real and synthetic datasets are presented to show the effectiveness and efficiency of our approaches.
stk -匿名:包含结构和文本信息的社交网络的k-匿名性
我们研究了匿名化社交网络的问题,以防止在社交网络中同时使用结构(节点度)和文本(边缘标签)信息的个人识别。本文在严格和宽松两个层面引入了个体的结构和文本对等(ST)概念,并将其正式定义为社会网络的结构和文本感知k -匿名(stk -匿名)。在stk匿名网络中,每个个体至少与K-1个其他节点st等价。实现stk -匿名的主要挑战来自边缘标签的相关性,这会导致边缘匿名化的传播。为了应对这一挑战,我们提出了一个两阶段的方法。在第二阶段提出了一种基于集合枚举树的方法和三种修剪策略,以避免匿名化过程中的传播问题。在真实数据集和合成数据集上的实验结果表明了我们方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信