Inferential Tasks as an Evaluation Technique for Visualization

Ashley Suh, Abigail Mosca, Shannon Robinson, Quinn Pham, Dylan Cashman, Alvitta Ottley, Remco Chang
{"title":"Inferential Tasks as an Evaluation Technique for Visualization","authors":"Ashley Suh, Abigail Mosca, Shannon Robinson, Quinn Pham, Dylan Cashman, Alvitta Ottley, Remco Chang","doi":"10.48550/arXiv.2205.05712","DOIUrl":null,"url":null,"abstract":"Designing suitable tasks for visualization evaluation remains challenging. Traditional evaluation techniques commonly rely on 'low-level' or 'open-ended' tasks to assess the efficacy of a proposed visualization, however, nontrivial trade-offs exist between the two. Low-level tasks allow for robust quantitative evaluations, but are not indicative of the complex usage of a visualization. Open-ended tasks, while excellent for insight-based evaluations, are typically unstructured and require time-consuming interviews. Bridging this gap, we propose inferential tasks: a complementary task category based on inferential learning in psychology. Inferential tasks produce quantitative evaluation data in which users are prompted to form and validate their own findings with a visualization. We demonstrate the use of inferential tasks through a validation experiment on two well-known visualization tools.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.05712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Designing suitable tasks for visualization evaluation remains challenging. Traditional evaluation techniques commonly rely on 'low-level' or 'open-ended' tasks to assess the efficacy of a proposed visualization, however, nontrivial trade-offs exist between the two. Low-level tasks allow for robust quantitative evaluations, but are not indicative of the complex usage of a visualization. Open-ended tasks, while excellent for insight-based evaluations, are typically unstructured and require time-consuming interviews. Bridging this gap, we propose inferential tasks: a complementary task category based on inferential learning in psychology. Inferential tasks produce quantitative evaluation data in which users are prompted to form and validate their own findings with a visualization. We demonstrate the use of inferential tasks through a validation experiment on two well-known visualization tools.
作为可视化评价技术的推理任务
为可视化评估设计合适的任务仍然具有挑战性。传统的评估技术通常依赖于“低级”或“开放式”任务来评估所提议的可视化的有效性,然而,两者之间存在着重要的权衡。低级任务允许进行可靠的定量评估,但并不表示可视化的复杂使用。开放式任务虽然非常适合基于洞察力的评估,但通常是非结构化的,需要耗时的面试。为了弥补这一差距,我们提出了推理任务:一个基于心理学推理学习的互补任务类别。推理任务产生定量评估数据,其中提示用户通过可视化来形成并验证他们自己的发现。我们通过对两个知名可视化工具的验证实验来演示推理任务的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信