{"title":"A neural network learning strategy for the control of a one-legged hopping machine","authors":"J. Helferty, J. Collins, M. Kam","doi":"10.1109/ROBOT.1989.100207","DOIUrl":null,"url":null,"abstract":"Results are presented on two neural network strategies for the control of dynamic locomotive systems, in particular a one-legged hopping robot. The control task is to make corrections to the motion of the robot that serve to maintain a fixed level of energy (and minimize energy losses), which yields a stable periodic limit cycle in the system's state space. Control of the robot is achieved by the use of artificial neural networks (ANNs) with a continuous learning memory. Through continuous reinforcement for past successes and failures, the control system develops a stable strategy for accomplishing the desired control objectives. The results are presented in the form of computer simulation that demonstrate the ability of two different ANNs to devise proper control signals that will develop a stable hopping strategy, and hence a stable limit cycle in the robot's state space, using imprecise knowledge of both the current state and the mathematical model of the robot leg.<<ETX>>","PeriodicalId":114394,"journal":{"name":"Proceedings, 1989 International Conference on Robotics and Automation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings, 1989 International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1989.100207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Results are presented on two neural network strategies for the control of dynamic locomotive systems, in particular a one-legged hopping robot. The control task is to make corrections to the motion of the robot that serve to maintain a fixed level of energy (and minimize energy losses), which yields a stable periodic limit cycle in the system's state space. Control of the robot is achieved by the use of artificial neural networks (ANNs) with a continuous learning memory. Through continuous reinforcement for past successes and failures, the control system develops a stable strategy for accomplishing the desired control objectives. The results are presented in the form of computer simulation that demonstrate the ability of two different ANNs to devise proper control signals that will develop a stable hopping strategy, and hence a stable limit cycle in the robot's state space, using imprecise knowledge of both the current state and the mathematical model of the robot leg.<>