Adaptive broadcast suppression for Trickle-based protocols

Thomas M. M. Meyfroyt, Milosh Stolikj, J. Lukkien
{"title":"Adaptive broadcast suppression for Trickle-based protocols","authors":"Thomas M. M. Meyfroyt, Milosh Stolikj, J. Lukkien","doi":"10.1109/WoWMoM.2015.7158134","DOIUrl":null,"url":null,"abstract":"Low-power wireless networks play an important role in the Internet of Things. Typically, these networks consist of a very large number of lossy and low-capacity devices, challenging the current state of the art in protocol design. In this context the Trickle algorithm plays an important role, serving as the basic mechanism for message dissemination in notable protocols such as RPL and MPL. While Trickle's broadcast suppression mechanism has been proven to be efficient, recent work has shown that it is intrinsically unfair in terms of load distribution and that its performance relies strongly on network topology. This can lead to increased end-to-end delays (MPL), or creation of sub-optimal routes (RPL). Furthermore, as highlighted in this work, there is no clear consensus within the research community about what the proper parameter settings of the suppression mechanism should be. We propose an extension to the Trickle algorithm, called adaptive-k, which allows nodes to individually adapt their suppression mechanism to local node density. Supported by analysis and a case study with RPL, we show that this extension allows for an easier configuration of Trickle, making it more robust to network topology.","PeriodicalId":221796,"journal":{"name":"2015 IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2015.7158134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Low-power wireless networks play an important role in the Internet of Things. Typically, these networks consist of a very large number of lossy and low-capacity devices, challenging the current state of the art in protocol design. In this context the Trickle algorithm plays an important role, serving as the basic mechanism for message dissemination in notable protocols such as RPL and MPL. While Trickle's broadcast suppression mechanism has been proven to be efficient, recent work has shown that it is intrinsically unfair in terms of load distribution and that its performance relies strongly on network topology. This can lead to increased end-to-end delays (MPL), or creation of sub-optimal routes (RPL). Furthermore, as highlighted in this work, there is no clear consensus within the research community about what the proper parameter settings of the suppression mechanism should be. We propose an extension to the Trickle algorithm, called adaptive-k, which allows nodes to individually adapt their suppression mechanism to local node density. Supported by analysis and a case study with RPL, we show that this extension allows for an easier configuration of Trickle, making it more robust to network topology.
基于涓滴协议的自适应广播抑制
低功耗无线网络在物联网中发挥着重要作用。通常,这些网络由非常大量的有损和低容量设备组成,挑战了协议设计的当前状态。在这种情况下,涓流算法扮演着重要的角色,它是RPL和MPL等著名协议中消息传播的基本机制。虽然涓滴的广播抑制机制已被证明是有效的,但最近的研究表明,它在负载分配方面本质上是不公平的,而且它的性能强烈依赖于网络拓扑。这可能导致端到端延迟(MPL)增加,或者创建次优路由(RPL)。此外,正如本工作所强调的那样,在研究界内,对于抑制机制的适当参数设置应该是什么,没有明确的共识。我们提出了对涓流算法的扩展,称为adaptive-k,它允许节点单独调整其抑制机制以适应局部节点密度。在RPL的分析和案例研究的支持下,我们展示了这个扩展允许更容易地配置涓流,使其对网络拓扑更健壮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信