Jointly Determining the State Dimension and Lag Order for Markov-Switching Vector Autoregressive Models

Nan Li, S. Kwok
{"title":"Jointly Determining the State Dimension and Lag Order for Markov-Switching Vector Autoregressive Models","authors":"Nan Li, S. Kwok","doi":"10.2139/ssrn.3800535","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of joint identification of the state dimension and lag order for a class of Markov-switching vector autoregressive (MS-VAR) models, in which all parameters are presumed to be regime-dependent. To this end, three complexity-penalized criteria AIC^{MS}, HQC^{MS} and SIC^{MS} are considered, and a new criterion AIC_c^{MS} is derived by minimizing the Kullback-Leibler (KL) divergence. The efficacy of the procedure is evaluated by means of Monte Carlo experiments. We illustrate the usefulness of the joint model selection procedure with empirical applications to the modeling of business cycles in the U.S. and Australia.","PeriodicalId":379040,"journal":{"name":"ERN: Business Cycles (Topic)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Business Cycles (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3800535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the problem of joint identification of the state dimension and lag order for a class of Markov-switching vector autoregressive (MS-VAR) models, in which all parameters are presumed to be regime-dependent. To this end, three complexity-penalized criteria AIC^{MS}, HQC^{MS} and SIC^{MS} are considered, and a new criterion AIC_c^{MS} is derived by minimizing the Kullback-Leibler (KL) divergence. The efficacy of the procedure is evaluated by means of Monte Carlo experiments. We illustrate the usefulness of the joint model selection procedure with empirical applications to the modeling of business cycles in the U.S. and Australia.
联合确定马尔可夫切换向量自回归模型的状态维数和滞后阶数
研究了一类马尔可夫切换向量自回归(MS-VAR)模型的状态维数和滞后阶数的联合辨识问题,该模型的所有参数都假定为状态相关。为此,考虑了AIC^{MS}、HQC^{MS}和SIC^{MS}三个复杂度惩罚判据,并通过最小化kullbackleibler (KL)散度导出了新的判据AIC_c^{MS}。通过蒙特卡罗实验对该方法的有效性进行了评价。我们说明了联合模型选择程序的实用性与实证应用,以模拟商业周期在美国和澳大利亚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信