Image segmentation using kernel fuzzy c-means clustering on level set method on noisy images

G. R. Reddy, K. Ramudu, Syed Zaheeruddin, R. Rao
{"title":"Image segmentation using kernel fuzzy c-means clustering on level set method on noisy images","authors":"G. R. Reddy, K. Ramudu, Syed Zaheeruddin, R. Rao","doi":"10.1109/ICCSP.2011.5739377","DOIUrl":null,"url":null,"abstract":"In this paper, kernel fuzzy c-means (KFCM) was used to generate an initial contour curve which overcomes leaking at the boundary during the curve propagation. Firstly, KFCM algorithm computes the fuzzy membership values for each pixel. On the basis of KFCM the edge indicator function was redefined. Using the edge indicator function the segmentation of medical images which are added with salt and pepper noise was performed to extract the regions of interest for further processing. The results of the above process of segmentation showed a considerable improvement in the evolution of the level set function.","PeriodicalId":408736,"journal":{"name":"2011 International Conference on Communications and Signal Processing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2011.5739377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, kernel fuzzy c-means (KFCM) was used to generate an initial contour curve which overcomes leaking at the boundary during the curve propagation. Firstly, KFCM algorithm computes the fuzzy membership values for each pixel. On the basis of KFCM the edge indicator function was redefined. Using the edge indicator function the segmentation of medical images which are added with salt and pepper noise was performed to extract the regions of interest for further processing. The results of the above process of segmentation showed a considerable improvement in the evolution of the level set function.
基于水平集的核模糊c均值聚类方法对噪声图像进行分割
本文采用核模糊c-均值(KFCM)方法生成初始轮廓曲线,克服了曲线传播过程中边界处的泄漏问题。首先,KFCM算法计算每个像素的模糊隶属度值;在KFCM的基础上重新定义了边缘指示函数。利用边缘指示函数对添加了椒盐噪声的医学图像进行分割,提取感兴趣的区域进行进一步处理。上述分割过程的结果表明,水平集函数的进化有了相当大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信