FedDDoS: An Efficient Federated Learning-based DDoS Attacks Classification in SDN-Enabled IIoT Networks

Ahmad Zainudin, Rubina Akter, Dong‐Seong Kim, Jae-Min Lee
{"title":"FedDDoS: An Efficient Federated Learning-based DDoS Attacks Classification in SDN-Enabled IIoT Networks","authors":"Ahmad Zainudin, Rubina Akter, Dong‐Seong Kim, Jae-Min Lee","doi":"10.1109/ICTC55196.2022.9952610","DOIUrl":null,"url":null,"abstract":"Independent distribution systems are made possible by Industry 4.0, and these systems produce heterogeneous data that is vulnerable to cyberattacks. The Distributed Denial of Service (DDoS) attack is a typical contemporary cyber threat that disables a target server by flooding it with malicious traffic. In this research, a deep-federated learning-based decentralized DDoS classification method enables independent clients to train local data while maintaining each industrial agent's data privacy. This framework applies a filter-based Pearson correlation coefficient (PCC) feature selection technique for selecting potential features to reduce complexity and improve the model performance. The proposed model has been evaluated with the recent DDoS attacks dataset, CICDDoS2019, and achieves great accuracy of 98.37% with a computational time of 3.917 ms.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9952610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Independent distribution systems are made possible by Industry 4.0, and these systems produce heterogeneous data that is vulnerable to cyberattacks. The Distributed Denial of Service (DDoS) attack is a typical contemporary cyber threat that disables a target server by flooding it with malicious traffic. In this research, a deep-federated learning-based decentralized DDoS classification method enables independent clients to train local data while maintaining each industrial agent's data privacy. This framework applies a filter-based Pearson correlation coefficient (PCC) feature selection technique for selecting potential features to reduce complexity and improve the model performance. The proposed model has been evaluated with the recent DDoS attacks dataset, CICDDoS2019, and achieves great accuracy of 98.37% with a computational time of 3.917 ms.
FedDDoS:基于sdn的工业物联网网络中基于联邦学习的高效DDoS攻击分类
工业4.0使独立的分销系统成为可能,而这些系统产生的异构数据很容易受到网络攻击。分布式拒绝服务(DDoS)攻击是一种典型的当代网络威胁,它通过向目标服务器发送大量恶意流量来禁用目标服务器。在本研究中,一种基于深度联邦学习的分散式DDoS分类方法使独立客户端能够训练本地数据,同时保持每个工业代理的数据隐私。该框架采用基于滤波器的Pearson相关系数(PCC)特征选择技术来选择潜在特征,以降低复杂性并提高模型性能。利用最新的DDoS攻击数据集CICDDoS2019对该模型进行了评估,计算时间为3.917 ms,准确率高达98.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信