Fast learning of biomimetic oculomotor control with nonparametric regression networks

T. Shibata, S. Schaal
{"title":"Fast learning of biomimetic oculomotor control with nonparametric regression networks","authors":"T. Shibata, S. Schaal","doi":"10.1109/ROBOT.2000.845331","DOIUrl":null,"url":null,"abstract":"Accurate oculomotor control is one of the essential pre-requisites of successful visuomotor coordination. Given the variable nonlinearities of the geometry of binocular vision as well as the possible nonlinearities of the oculomotor plant, it is desirable to accomplish accurate oculomotor control through learning approaches. We investigate learning control for a biomimetic active vision system mounted on a humanoid robot. By combining a biologically inspired cerebellar learning scheme with a state-of-the-art statistical learning network, our robot system is able to acquire high performance visual stabilization reflexes after about 40 seconds of learning despite significant nonlinearities and processing delays in the system.","PeriodicalId":286422,"journal":{"name":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2000.845331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Accurate oculomotor control is one of the essential pre-requisites of successful visuomotor coordination. Given the variable nonlinearities of the geometry of binocular vision as well as the possible nonlinearities of the oculomotor plant, it is desirable to accomplish accurate oculomotor control through learning approaches. We investigate learning control for a biomimetic active vision system mounted on a humanoid robot. By combining a biologically inspired cerebellar learning scheme with a state-of-the-art statistical learning network, our robot system is able to acquire high performance visual stabilization reflexes after about 40 seconds of learning despite significant nonlinearities and processing delays in the system.
基于非参数回归网络的仿生动眼肌控制快速学习
准确的眼球运动控制是成功的视觉运动协调的必要前提之一。考虑到双眼视觉几何结构的非线性变化,以及动眼体可能存在的非线性,通过学习方法实现精确的动眼体控制是很有必要的。研究了安装在人形机器人上的仿生主动视觉系统的学习控制。通过将生物启发的小脑学习方案与最先进的统计学习网络相结合,我们的机器人系统能够在大约40秒的学习后获得高性能的视觉稳定反射,尽管系统中存在显着的非线性和处理延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信