Dunkl Operators and Related Special Functions

C. Dunkl
{"title":"Dunkl Operators and Related Special Functions","authors":"C. Dunkl","doi":"10.1017/9780511777165.008","DOIUrl":null,"url":null,"abstract":"Functions like the exponential, Chebyshev polynomials, and monomial symmetric polynomials are preeminent among all special functions. They have simple definitions and can be expressed using easily specified integers like n!. Families of functions like Gegenbauer, Jacobi and Jack symmetric polynomials and Bessel functions are labeled by parameters. These could be unspecified transcendental numbers or drawn from large sets of real numbers, for example the complement of {-1/2, -3/2, -5/2,...}. One aim of this chapter is to provide a harmonic analysis setting in which parameters play a natural role. The basic objects are finite reflection (Coxeter) groups and algebras of operators on polynomials which generalize the algebra of partial differential operators. These algebras have as many parameters as the number of conjugacy classes of reflections in the associated groups.","PeriodicalId":356498,"journal":{"name":"Encyclopedia of Special Functions: The Askey-Bateman Project","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Special Functions: The Askey-Bateman Project","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9780511777165.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Functions like the exponential, Chebyshev polynomials, and monomial symmetric polynomials are preeminent among all special functions. They have simple definitions and can be expressed using easily specified integers like n!. Families of functions like Gegenbauer, Jacobi and Jack symmetric polynomials and Bessel functions are labeled by parameters. These could be unspecified transcendental numbers or drawn from large sets of real numbers, for example the complement of {-1/2, -3/2, -5/2,...}. One aim of this chapter is to provide a harmonic analysis setting in which parameters play a natural role. The basic objects are finite reflection (Coxeter) groups and algebras of operators on polynomials which generalize the algebra of partial differential operators. These algebras have as many parameters as the number of conjugacy classes of reflections in the associated groups.
Dunkl算子和相关的特殊函数
指数多项式、切比雪夫多项式和单对称多项式等函数在所有特殊函数中都是出类拔萃的。它们具有简单的定义,并且可以使用易于指定的整数(如n!)来表示。函数族如Gegenbauer, Jacobi和Jack对称多项式和贝塞尔函数用参数标记。这些可以是未指定的超越数,也可以是从大量实数中提取的,例如{-1/2,-3/2,-5/2,…}的补数。本章的目的之一是提供一个谐波分析设置,其中参数发挥自然作用。其基本对象是多项式上的有限反射群(Coxeter)和算子代数,它们是对偏微分算子代数的推广。这些代数的参数与相关群中反射的共轭类的数量一样多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信