“Wow!” Bayesian surprise for salient acoustic event detection

Boris Schauerte, R. Stiefelhagen
{"title":"“Wow!” Bayesian surprise for salient acoustic event detection","authors":"Boris Schauerte, R. Stiefelhagen","doi":"10.1109/ICASSP.2013.6638898","DOIUrl":null,"url":null,"abstract":"We extend our previous work and present how Bayesian surprise can be applied to detect salient acoustic events. Therefore, we use the Gamma distribution to model each frequencies spectrogram distribution. Then, we use the Kullback-Leibler divergence of the posterior and prior distribution to calculate how “unexpected” and thus surprising newly observed audio samples are. This way, we are able to efficiently detect arbitrary, unexpected and thus surprising acoustic events. Complementing our qualitative system evaluations for (humanoid) robots, we demonstrate the effectiveness and practical applicability of the approach on the CLEAR 2007 acoustic event detection data.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We extend our previous work and present how Bayesian surprise can be applied to detect salient acoustic events. Therefore, we use the Gamma distribution to model each frequencies spectrogram distribution. Then, we use the Kullback-Leibler divergence of the posterior and prior distribution to calculate how “unexpected” and thus surprising newly observed audio samples are. This way, we are able to efficiently detect arbitrary, unexpected and thus surprising acoustic events. Complementing our qualitative system evaluations for (humanoid) robots, we demonstrate the effectiveness and practical applicability of the approach on the CLEAR 2007 acoustic event detection data.
“哇!”显著声事件检测的贝叶斯惊讶度
我们扩展了我们以前的工作,并介绍了如何将贝叶斯惊讶度应用于检测显著的声学事件。因此,我们使用伽马分布来模拟每个频率谱图分布。然后,我们使用后验分布和先验分布的Kullback-Leibler散度来计算新观察到的音频样本的“意外”程度和令人惊讶程度。通过这种方式,我们能够有效地探测到任意的、意想不到的、因此令人惊讶的声学事件。补充我们对(人形)机器人的定性系统评估,我们展示了该方法在CLEAR 2007声学事件检测数据上的有效性和实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信