Locally Recoverable Coded Matrix Multiplication

Haewon Jeong, Fangwei Ye, P. Grover
{"title":"Locally Recoverable Coded Matrix Multiplication","authors":"Haewon Jeong, Fangwei Ye, P. Grover","doi":"10.1109/ALLERTON.2018.8636019","DOIUrl":null,"url":null,"abstract":"Repair locality is important to recover from failed nodes in distributed computing especially when communicating all the data to a master node is expensive. Here, building on recent work on coded matrix multiplication, we provide locally recoverable coded matrix multiplication strategies. Leveraging constructions of optimal matrix multiplication codes and optimal locally recoverable (LRC) codes, we provide constructions of LRC Polynomial codes (minimal communication) and LRC MatDot codes (minimal storage).","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8636019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Repair locality is important to recover from failed nodes in distributed computing especially when communicating all the data to a master node is expensive. Here, building on recent work on coded matrix multiplication, we provide locally recoverable coded matrix multiplication strategies. Leveraging constructions of optimal matrix multiplication codes and optimal locally recoverable (LRC) codes, we provide constructions of LRC Polynomial codes (minimal communication) and LRC MatDot codes (minimal storage).
局部可恢复的编码矩阵乘法
在分布式计算中,修复局部性对于从故障节点中恢复非常重要,特别是在将所有数据通信到主节点的成本很高的情况下。在这里,基于最近关于编码矩阵乘法的工作,我们提供了局部可恢复的编码矩阵乘法策略。利用最优矩阵乘法码和最优局部可恢复(LRC)码的结构,我们提供了LRC多项式码(最小通信)和LRC MatDot码(最小存储)的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信