Web Content Outlier Mining using Machine Learning and Mathematical Approaches

Thinzar Tun, Khin Mo Mo Tun
{"title":"Web Content Outlier Mining using Machine Learning and Mathematical Approaches","authors":"Thinzar Tun, Khin Mo Mo Tun","doi":"10.1109/AITC.2019.8921085","DOIUrl":null,"url":null,"abstract":"Due to the massive, dynamic and heterogeneous nature of the web, discovering outliers from the web is demanding than from the numeric dataset. On exploring for information in the web, the inappropriate irrelevant and redundant information may be retrieved to the user. So, it is a big challenge to get and access high quality information on the web effectively and efficiently without including irrelevant and redundant information. Mining web content outliers focus on mining inappropriate duplicate and irrelevant web pages from the other web pages under the same categories. Removing outliers from the web improves the accuracy of search results, decreases the complexity of time for indexing and complexity of time and saves the user time and effort. We applied the Latent Dirichlet Allocation method from the machine learning approaches and a mathematical approach named linear correlation method to move web content outliers. This system tends to improve F1-measure, accuracy results and reduce time complexity.","PeriodicalId":388642,"journal":{"name":"2019 International Conference on Advanced Information Technologies (ICAIT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Information Technologies (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AITC.2019.8921085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the massive, dynamic and heterogeneous nature of the web, discovering outliers from the web is demanding than from the numeric dataset. On exploring for information in the web, the inappropriate irrelevant and redundant information may be retrieved to the user. So, it is a big challenge to get and access high quality information on the web effectively and efficiently without including irrelevant and redundant information. Mining web content outliers focus on mining inappropriate duplicate and irrelevant web pages from the other web pages under the same categories. Removing outliers from the web improves the accuracy of search results, decreases the complexity of time for indexing and complexity of time and saves the user time and effort. We applied the Latent Dirichlet Allocation method from the machine learning approaches and a mathematical approach named linear correlation method to move web content outliers. This system tends to improve F1-measure, accuracy results and reduce time complexity.
使用机器学习和数学方法的Web内容异常值挖掘
由于网络的庞大、动态和异构特性,从网络中发现异常值比从数字数据集中发现异常值要求更高。用户在网络上搜索信息时,可能会检索到不合适的、不相关的、冗余的信息。因此,如何有效、高效地获取和访问网络上的高质量信息,而不包含不相关和冗余的信息,是一个很大的挑战。网页内容异常值挖掘侧重于从相同类别下的其他网页中挖掘不适当的重复和不相关的网页。从网络中删除异常值提高了搜索结果的准确性,减少了索引时间的复杂性和时间的复杂性,节省了用户的时间和精力。我们应用机器学习方法中的潜狄利克雷分配方法和一种称为线性相关方法的数学方法来移动web内容异常值。该系统有利于提高f1测量结果的准确性,降低时间复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信