Analisa Perbandingan Kontroler PID Terhadap Motor BLDC Menggunakan Penalaran Cohen-Coon dan Trial & Error

Rendi Fajar Gumilang, Sitti Amalia, Anggun Anugrah, Sepanur Bandri
{"title":"Analisa Perbandingan Kontroler PID Terhadap Motor BLDC Menggunakan Penalaran Cohen-Coon dan Trial & Error","authors":"Rendi Fajar Gumilang, Sitti Amalia, Anggun Anugrah, Sepanur Bandri","doi":"10.38035/rrj.v5i3.759","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to design PID control on BLDC motors using 2 tuning methods, namely Cohen-Coon and Trial & Error. PID control of formula calculations with calculations in Simulink Matlab. From the simulation results shown in graphical form, the use of the PID control gives a better effect than the use of the P and PI controls. This can be seen in the comparison curve which shows the speed of the initial start process when using the PID control. In the Trial & Error method, the response value of the system to controller P is obtained, namely, rise time = 0.0151 s, settling time = 0.6 s, overshoot = 75.9%, peak time = 1.74 s, and time delay = 0.424 s. on the PI controller namely, rise time = 0.0148 s, settling time = 0.591 s, overshoot = 76.3%, peak time = 1.74 s, and time delay = 0.0416 s. on the PID controller namely, rise time = 0.0496 s, settling time = 0.55 s, overshoot = 44 %, peak time = 1.31 s, and time delay = 0.128 s. In the Cohen-Coon method, the response value of the system to controller P is obtained, namely, rise time = 0.0168 s, settling time = 0.575 s, overshoot = 73.3%, peak time = 1.71 s, and time delay = 0.0469 s. on the PI controller namely, rise time = 0.0573 s, settling time = 0.603 s, overshoot = 39.3%, peak time = 1.23 s, and time delay = 0.142 s. on the PID controller namely, rise time = 0.276 s, settling time = 0.658 s, overshoot = 2.42 %, peak time = 0.159 s, and time delay = 0.576 s. From the simulation results it is shown that the value for the Cohen-Coon tuning method is better than the Trial & Error method, perhaps because the input value for the Trial & Error method is larger.","PeriodicalId":333433,"journal":{"name":"Ranah Research : Journal of Multidisciplinary Research and Development","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ranah Research : Journal of Multidisciplinary Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38035/rrj.v5i3.759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this research is to design PID control on BLDC motors using 2 tuning methods, namely Cohen-Coon and Trial & Error. PID control of formula calculations with calculations in Simulink Matlab. From the simulation results shown in graphical form, the use of the PID control gives a better effect than the use of the P and PI controls. This can be seen in the comparison curve which shows the speed of the initial start process when using the PID control. In the Trial & Error method, the response value of the system to controller P is obtained, namely, rise time = 0.0151 s, settling time = 0.6 s, overshoot = 75.9%, peak time = 1.74 s, and time delay = 0.424 s. on the PI controller namely, rise time = 0.0148 s, settling time = 0.591 s, overshoot = 76.3%, peak time = 1.74 s, and time delay = 0.0416 s. on the PID controller namely, rise time = 0.0496 s, settling time = 0.55 s, overshoot = 44 %, peak time = 1.31 s, and time delay = 0.128 s. In the Cohen-Coon method, the response value of the system to controller P is obtained, namely, rise time = 0.0168 s, settling time = 0.575 s, overshoot = 73.3%, peak time = 1.71 s, and time delay = 0.0469 s. on the PI controller namely, rise time = 0.0573 s, settling time = 0.603 s, overshoot = 39.3%, peak time = 1.23 s, and time delay = 0.142 s. on the PID controller namely, rise time = 0.276 s, settling time = 0.658 s, overshoot = 2.42 %, peak time = 0.159 s, and time delay = 0.576 s. From the simulation results it is shown that the value for the Cohen-Coon tuning method is better than the Trial & Error method, perhaps because the input value for the Trial & Error method is larger.
本研究的目的是利用Cohen-Coon和Trial & Error两种整定方法设计无刷直流电机的PID控制。PID控制的公式计算用Simulink Matlab进行计算。从图形化的仿真结果来看,使用PID控制比使用P和PI控制效果更好。这可以在比较曲线中看到,它显示了使用PID控制时初始启动过程的速度。试验和错误的方法,系统控制器的响应值P,也就是说,上升时间= 0.0151 s,沉淀时间= 0.6年代,过度= 75.9%,高峰时间= 1.74 s,和时间延迟= 0.424 s PI控制器即上升时间= 0.0148 s,沉淀时间= 0.591年代,过度= 76.3%,高峰时间= 1.74 s,和时间延迟= 0.0416 s . PID控制器即上升时间= 0.0496 s,沉淀时间= 0.55年代,过度= 44%,峰值时间= 1.31秒,时间延迟= 0.128 s。在Cohen-Coon方法中,系统控制器的响应值P,即上升时间= 0.0168 s,沉淀时间= 0.575年代,过度= 73.3%,高峰时间= 1.71 s,和时间延迟= 0.0469 s PI控制器即上升时间= 0.0573 s,沉淀时间= 0.603年代,过度= 39.3%,高峰时间= 1.23 s,和时间延迟= 0.142 s . PID控制器即上升时间= 0.276 s,沉淀时间= 0.658年代,过度= 2.42%,峰值时间= 0.159秒,时间延迟= 0.576 s。仿真结果表明,Cohen-Coon调优方法的值优于Trial & Error方法,这可能是因为Trial & Error方法的输入值更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信