Bound lengths based on constant-stress PALT under different censoring patterns

G. Prakash, Prabhakar Singh
{"title":"Bound lengths based on constant-stress PALT under different censoring patterns","authors":"G. Prakash, Prabhakar Singh","doi":"10.14419/ijsw.v6i1.8662","DOIUrl":null,"url":null,"abstract":"The Gompertz distribution is assumed in the present article for drawing the inferences based on Bayesian methodology. Constant-Stress Partially Accelerated Life Test (CS-PALT) have used for the underlying distribution on first-failure Progressive (FFP) censoring scheme. All special cases of the FFP censoring scheme have used for the present comparative analysis. The comparison has been done between different special cases of FFP based on Approximate Confidence Lengths (ACL) under Normal approximation, Bootstrap Confidence Length (BCL) and One-Sample Bayes Prediction Bound Lengths (BPBL). A simulation study have been carried out for the present analysis.","PeriodicalId":119953,"journal":{"name":"International Journal of Advances in Scientific Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijsw.v6i1.8662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Gompertz distribution is assumed in the present article for drawing the inferences based on Bayesian methodology. Constant-Stress Partially Accelerated Life Test (CS-PALT) have used for the underlying distribution on first-failure Progressive (FFP) censoring scheme. All special cases of the FFP censoring scheme have used for the present comparative analysis. The comparison has been done between different special cases of FFP based on Approximate Confidence Lengths (ACL) under Normal approximation, Bootstrap Confidence Length (BCL) and One-Sample Bayes Prediction Bound Lengths (BPBL). A simulation study have been carried out for the present analysis.
基于恒应力PALT在不同剪切模式下的束缚长度
本文假定Gompertz分布,以便根据贝叶斯方法进行推论。恒应力部分加速寿命试验(CS-PALT)用于首次失效渐进(FFP)审查方案的底层分布。本比较分析采用了FFP审查方案的所有特殊情况。比较了基于正态近似近似置信长度(ACL)、Bootstrap置信长度(BCL)和单样本贝叶斯预测界长度(BPBL)的FFP的不同特殊情况。本文进行了仿真研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信