Hand Gesture Signal Classification using Machine Learning

Athira Devaraj, Aswathy K. Nair
{"title":"Hand Gesture Signal Classification using Machine Learning","authors":"Athira Devaraj, Aswathy K. Nair","doi":"10.1109/ICCSP48568.2020.9182045","DOIUrl":null,"url":null,"abstract":"This research work focuses on identifying a specific hand gesture from the given EMG signal, acquired by sensor-based band. Surface EMG and machine learning techniques are used for the identification and classification purpose. The raw EMG signal captured using the sensor is initially passed through suitable preprocessing steps to avoid the noise artifacts. Followed by this, 8 different time-domain features are collected from these raw EMG signals, using which a feature matrix is created. SVM and KNN are the machine learning classifiers used here. The entire system is implemented in MATLAB 2019a. Using these methods, a promising accuracy of 93% is obtained through KNN and an accuracy of 83% using SVM.","PeriodicalId":321133,"journal":{"name":"2020 International Conference on Communication and Signal Processing (ICCSP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP48568.2020.9182045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This research work focuses on identifying a specific hand gesture from the given EMG signal, acquired by sensor-based band. Surface EMG and machine learning techniques are used for the identification and classification purpose. The raw EMG signal captured using the sensor is initially passed through suitable preprocessing steps to avoid the noise artifacts. Followed by this, 8 different time-domain features are collected from these raw EMG signals, using which a feature matrix is created. SVM and KNN are the machine learning classifiers used here. The entire system is implemented in MATLAB 2019a. Using these methods, a promising accuracy of 93% is obtained through KNN and an accuracy of 83% using SVM.
使用机器学习的手势信号分类
这项研究工作的重点是从给定的肌电信号中识别特定的手势,这些信号是由基于传感器的频段获取的。表面肌电信号和机器学习技术用于识别和分类目的。使用传感器捕获的原始肌电信号最初通过适当的预处理步骤,以避免噪声伪影。然后,从这些原始肌电信号中收集8个不同的时域特征,利用这些特征矩阵创建特征矩阵。SVM和KNN是这里使用的机器学习分类器。整个系统在MATLAB 2019a中实现。使用这些方法,通过KNN和SVM分别获得了93%和83%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信