Structure and Randomness in Planning and Reinforcement Learning

K. Czechowski, Piotr Januszewski, Piotr Kozakowski, Łukasz Kuciński, Piotr Milos
{"title":"Structure and Randomness in Planning and Reinforcement Learning","authors":"K. Czechowski, Piotr Januszewski, Piotr Kozakowski, Łukasz Kuciński, Piotr Milos","doi":"10.1109/IJCNN52387.2021.9533317","DOIUrl":null,"url":null,"abstract":"Planning in large state spaces inevitably needs to balance the depth and breadth of the search. It has a crucial impact on the performance of a planner and most manage this interplay implicitly. We present a novel method Shoot Tree Search (STS), which makes it possible to control this trade-off more explicitly. Our algorithm can be understood as an interpolation between two celebrated search mechanisms: MCTS and random shooting. It also lets the user control the bias-variance trade-off, akin to TD(n), but in the tree search context. In experiments on challenging domains, we show that STS can get the best of both worlds consistently achieving higher scores.","PeriodicalId":396583,"journal":{"name":"2021 International Joint Conference on Neural Networks (IJCNN)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN52387.2021.9533317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Planning in large state spaces inevitably needs to balance the depth and breadth of the search. It has a crucial impact on the performance of a planner and most manage this interplay implicitly. We present a novel method Shoot Tree Search (STS), which makes it possible to control this trade-off more explicitly. Our algorithm can be understood as an interpolation between two celebrated search mechanisms: MCTS and random shooting. It also lets the user control the bias-variance trade-off, akin to TD(n), but in the tree search context. In experiments on challenging domains, we show that STS can get the best of both worlds consistently achieving higher scores.
计划和强化学习中的结构和随机性
在大型状态空间中进行规划不可避免地需要平衡搜索的深度和广度。它对计划者的表现有着至关重要的影响,而且大多数人都在暗中管理这种相互作用。我们提出了一种新的方法Shoot Tree Search (STS),使得更明确地控制这种权衡成为可能。我们的算法可以理解为两种著名的搜索机制之间的插值:MCTS和随机射击。它还允许用户控制偏差-方差权衡,类似于TD(n),但在树搜索上下文中。在挑战性领域的实验中,我们表明STS可以两全其美地获得更高的分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信