Evaluation of plant growth-promoting activities of endophytic bacteria of Musa acuminata and their characterization

Shilpi Singh, Kamlesh Choure, P. Rai, S. Gour, V. Agnihotri
{"title":"Evaluation of plant growth-promoting activities of endophytic bacteria of Musa acuminata and their characterization","authors":"Shilpi Singh, Kamlesh Choure, P. Rai, S. Gour, V. Agnihotri","doi":"10.7324/jabb.2022.100511","DOIUrl":null,"url":null,"abstract":"The study was conducted with an aim of isolating and identifying bacterial endophytes associated with Musa acuminata and assessing their plant growth-promoting properties. Endophytic bacteria show mutualistic relationship with plants and help them in alleviating several biotic and abiotic stress without showing any apparent negative effect to the host plant. In the present study, explants samples from different parts of M. acuminata plant such as root, stem, and leaves were collected and cultured. A total of 33 bacterial isolates were obtained and screened for their biotechnological potential for promoting plant growth. From which, 19 isolates were selected for further analysis based on their in vitro plant growth-promoting activities that include indole-3-acetic acid production, phosphate solubilization, nitrogen fixation, ammonia production, hydrogen cyanide (HCN) production, and siderophore production. In addition, these isolates also evaluated for the antagonist activity against Fusarium oxysporum and Macrophomina phaseolina. Among them, five isolates were sequenced, on the basis of 16S rRNA gene sequencing homology of the representative strains was identified EMS1 and EMS4 as Bacillus cereus , EMS13, 14, and 18 as Enterobacter cloacae, and EMS16 as Enterobacter hormaechei. Phylogenetic tree indicated evolutionary relationship of these bacteria to their closely related species. The result of this study demonstrated that based on growth-promoting competencies, all isolated strains have ability that influence the growth of host plants and have potential to be used as effective growth promoting bioinoculant for M. acuminata .","PeriodicalId":423079,"journal":{"name":"Journal of Applied Biology & Biotechnology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/jabb.2022.100511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The study was conducted with an aim of isolating and identifying bacterial endophytes associated with Musa acuminata and assessing their plant growth-promoting properties. Endophytic bacteria show mutualistic relationship with plants and help them in alleviating several biotic and abiotic stress without showing any apparent negative effect to the host plant. In the present study, explants samples from different parts of M. acuminata plant such as root, stem, and leaves were collected and cultured. A total of 33 bacterial isolates were obtained and screened for their biotechnological potential for promoting plant growth. From which, 19 isolates were selected for further analysis based on their in vitro plant growth-promoting activities that include indole-3-acetic acid production, phosphate solubilization, nitrogen fixation, ammonia production, hydrogen cyanide (HCN) production, and siderophore production. In addition, these isolates also evaluated for the antagonist activity against Fusarium oxysporum and Macrophomina phaseolina. Among them, five isolates were sequenced, on the basis of 16S rRNA gene sequencing homology of the representative strains was identified EMS1 and EMS4 as Bacillus cereus , EMS13, 14, and 18 as Enterobacter cloacae, and EMS16 as Enterobacter hormaechei. Phylogenetic tree indicated evolutionary relationship of these bacteria to their closely related species. The result of this study demonstrated that based on growth-promoting competencies, all isolated strains have ability that influence the growth of host plants and have potential to be used as effective growth promoting bioinoculant for M. acuminata .
荆芥内生细菌促植物生长活性评价及其特性研究
本研究的目的是分离和鉴定与尖锐木有关的细菌内生菌,并评估其促进植物生长的特性。内生细菌与植物表现出共生关系,帮助植物缓解多种生物和非生物胁迫,而对寄主植物没有明显的负面影响。本研究从荆芥的根、茎、叶等不同部位采集外植体进行培养。共分离得到33株细菌,并对其促进植物生长的生物技术潜力进行了筛选。从中选择了19株菌株,根据其体外植物生长促进活性进行进一步分析,这些活性包括吲哚-3-乙酸的产生、磷酸盐的溶解、固氮、氨的产生、氰化氢(HCN)的产生和铁载体的产生。此外,还对分离菌株对尖孢镰刀菌和菜绿大霉的拮抗活性进行了评价。其中,对5株菌株进行测序,根据代表性菌株的16S rRNA基因测序同源性,确定EMS1和EMS4为蜡样芽孢杆菌,EMS13、14和18为阴沟肠杆菌,EMS16为贺氏肠杆菌。系统发育树显示了这些细菌与近缘种的进化关系。本研究结果表明,基于促生长能力,所有分离菌株都具有影响寄主植物生长的能力,有潜力作为有效的促生长生物接种剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信