On the convergence speed of a class of higher-order ILC schemes

Jian-xin Xu, Y. Tan
{"title":"On the convergence speed of a class of higher-order ILC schemes","authors":"Jian-xin Xu, Y. Tan","doi":"10.1109/CDC.2001.980990","DOIUrl":null,"url":null,"abstract":"In iterative learning control (ILC) design, a direct objective is to achieve time-optimal learning in the presence of the system uncertainties. Higher-order ILC (HO-ILC) schemes have been proposed targeting at improving the convergence speed in the iteration domain. A m-th order ILC essentially uses system control information generated from past m iterations. A question is: can the convergence speed be improved in general by a HO-ILC? We show that, as far as the linear HO-ILC is concerned, the lower order ILC always outperform the higher-order ILC in the sense of time weighted norm. In order to facilitate a rigorous analysis of HO-ILC convergence speed and lay a fair basis for comparisons among ILC with different orders, the problem is formulated into a robust optimization problem in a min-max form.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In iterative learning control (ILC) design, a direct objective is to achieve time-optimal learning in the presence of the system uncertainties. Higher-order ILC (HO-ILC) schemes have been proposed targeting at improving the convergence speed in the iteration domain. A m-th order ILC essentially uses system control information generated from past m iterations. A question is: can the convergence speed be improved in general by a HO-ILC? We show that, as far as the linear HO-ILC is concerned, the lower order ILC always outperform the higher-order ILC in the sense of time weighted norm. In order to facilitate a rigorous analysis of HO-ILC convergence speed and lay a fair basis for comparisons among ILC with different orders, the problem is formulated into a robust optimization problem in a min-max form.
一类高阶ILC格式的收敛速度
在迭代学习控制(ILC)设计中,一个直接的目标是在存在系统不确定性的情况下实现时间最优学习。为了提高迭代域的收敛速度,提出了高阶ILC (HO-ILC)算法。m阶ILC本质上使用由过去m次迭代生成的系统控制信息。一个问题是:HO-ILC能提高收敛速度吗?结果表明,对于线性HO-ILC,在时间加权范数意义上,低阶ILC总是优于高阶ILC。为了对HO-ILC的收敛速度进行严格的分析,并为不同阶次的ILC之间的比较提供公平的基础,将问题化为最小-最大形式的鲁棒优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信