Mining generalized association rules using pruning techniques

Yin-Fu Huang, Chieh-Ming Wu
{"title":"Mining generalized association rules using pruning techniques","authors":"Yin-Fu Huang, Chieh-Ming Wu","doi":"10.1109/ICDM.2002.1183907","DOIUrl":null,"url":null,"abstract":"The goal of the paper is to mine generalized association rules using pruning techniques. Given a large transaction database and a hierarchical taxonomy tree of the items, we try to find the association rules between the items at different levels in the taxonomy tree under the assumption that original frequent itemsets and association rules have already been generated beforehand In the proposed algorithm GMAR, we use join methods and pruning techniques to generate new generalized association rules. Through several comprehensive experiments, we find that the GMAR algorithm is much better than BASIC and Cumulate algorithms.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1183907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

The goal of the paper is to mine generalized association rules using pruning techniques. Given a large transaction database and a hierarchical taxonomy tree of the items, we try to find the association rules between the items at different levels in the taxonomy tree under the assumption that original frequent itemsets and association rules have already been generated beforehand In the proposed algorithm GMAR, we use join methods and pruning techniques to generate new generalized association rules. Through several comprehensive experiments, we find that the GMAR algorithm is much better than BASIC and Cumulate algorithms.
利用剪枝技术挖掘广义关联规则
本文的目的是利用剪枝技术挖掘广义关联规则。在给定一个大型事务数据库和一棵分层分类法树的情况下,在假设原始频繁项集和关联规则已经生成的情况下,我们试图在分类法树中找到不同层次的项之间的关联规则。在本文提出的GMAR算法中,我们使用连接方法和剪枝技术生成新的广义关联规则。通过多次综合实验,我们发现GMAR算法比BASIC和cumulative算法要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信