Texture Classification using a Hybrid Deep and Handcrafted Features

Fawad, Muhammad Adeel Asghar, A. Saeed, Muhammad Jamil Khan, Muhammad Zahid, M. Rehman
{"title":"Texture Classification using a Hybrid Deep and Handcrafted Features","authors":"Fawad, Muhammad Adeel Asghar, A. Saeed, Muhammad Jamil Khan, Muhammad Zahid, M. Rehman","doi":"10.1109/UCET.2019.8881836","DOIUrl":null,"url":null,"abstract":"In this paper, we have proposed a hybrid descriptor for the texture classification task. The feature variables are extracted from the approximation coefficients of the image, through a combination of deep neural network and handcrafted feature. The AlexNet along with completed joint scale local binary pattern (CJLBP) is used for illumination, scaling, and orientation invariance description. The wavelet decomposition layer provides robustness against additive white Gaussian noise. The feature dimensionality is reduced by using Principal Component Analysis. We have evaluated our proposed descriptor on the images of Outex texture databases. The experimental results presented in the paper in term of classification accuracy show that our proposed descriptor outperforms state-of-the-art feature extraction scheme.","PeriodicalId":169373,"journal":{"name":"2019 UK/ China Emerging Technologies (UCET)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 UK/ China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET.2019.8881836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we have proposed a hybrid descriptor for the texture classification task. The feature variables are extracted from the approximation coefficients of the image, through a combination of deep neural network and handcrafted feature. The AlexNet along with completed joint scale local binary pattern (CJLBP) is used for illumination, scaling, and orientation invariance description. The wavelet decomposition layer provides robustness against additive white Gaussian noise. The feature dimensionality is reduced by using Principal Component Analysis. We have evaluated our proposed descriptor on the images of Outex texture databases. The experimental results presented in the paper in term of classification accuracy show that our proposed descriptor outperforms state-of-the-art feature extraction scheme.
使用混合深度和手工特征的纹理分类
本文提出了一种用于纹理分类任务的混合描述符。采用深度神经网络和手工特征相结合的方法,从图像的近似系数中提取特征变量。AlexNet与完成联合尺度局部二进制模式(CJLBP)一起用于照明,缩放和方向不变性描述。小波分解层对加性高斯白噪声具有鲁棒性。采用主成分分析法对特征维数进行降维。我们已经在Outex纹理数据库的图像上对我们提出的描述符进行了评估。在分类精度方面的实验结果表明,本文提出的描述符优于目前最先进的特征提取方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信