H Watanabe, M Usa, M Kobayashi, S Agatsuma, H Inaba
{"title":"Weak chemiluminescence of bilirubin and its stimulation by aldehydes.","authors":"H Watanabe, M Usa, M Kobayashi, S Agatsuma, H Inaba","doi":"10.1002/bio.1170070102","DOIUrl":null,"url":null,"abstract":"<p><p>Bilirubin in an alkaline solution exhibits a weak chemiluminescence (CL) under aerobic conditions. This spontaneous CL was markedly enhanced by the addition of various aldehydes. The fluorescent emission spectrum of bilirubin, excited by weak intensity light at 350 nm, coincided with its CL emission spectrum (peak at 670 nm). CL emission from bilirubin was not quenched by active oxygen scavengers. This suggests that triplet oxygen reacts with bilirubin, and forms an oxygenated intermediate (hydroperoxide) as a primary emitter (oxidative scission of tetrapyrrole bonds in bilirubin is not involved in this CL). The Ehrlich reaction (test for monopyrroles) and hydrolsulphite reaction (test for dipyrroles) on the CL reaction mixture and unreacted bilirubin showed no differences. When the CL was initiated by singlet oxygen, rather than superoxide anion, monopyrrole, was detected in the reaction products by gel chromatography. The inhibitory effect of a scavenger of singlet oxygen on CL was eliminated in the presence of formaldehyde. Therefore, triplet carbonyl, formed by singlet oxygen through the dioxetane structure in bilirubin, is not an emitter. The reaction mechanism of bilirubin CL and the formation of a hydroperoxide intermediate is discussed in relation to the chemical structure of luciferin molecules from bioluminescent organisms.</p>","PeriodicalId":15068,"journal":{"name":"Journal of bioluminescence and chemiluminescence","volume":"7 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"1992-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/bio.1170070102","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioluminescence and chemiluminescence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/bio.1170070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Bilirubin in an alkaline solution exhibits a weak chemiluminescence (CL) under aerobic conditions. This spontaneous CL was markedly enhanced by the addition of various aldehydes. The fluorescent emission spectrum of bilirubin, excited by weak intensity light at 350 nm, coincided with its CL emission spectrum (peak at 670 nm). CL emission from bilirubin was not quenched by active oxygen scavengers. This suggests that triplet oxygen reacts with bilirubin, and forms an oxygenated intermediate (hydroperoxide) as a primary emitter (oxidative scission of tetrapyrrole bonds in bilirubin is not involved in this CL). The Ehrlich reaction (test for monopyrroles) and hydrolsulphite reaction (test for dipyrroles) on the CL reaction mixture and unreacted bilirubin showed no differences. When the CL was initiated by singlet oxygen, rather than superoxide anion, monopyrrole, was detected in the reaction products by gel chromatography. The inhibitory effect of a scavenger of singlet oxygen on CL was eliminated in the presence of formaldehyde. Therefore, triplet carbonyl, formed by singlet oxygen through the dioxetane structure in bilirubin, is not an emitter. The reaction mechanism of bilirubin CL and the formation of a hydroperoxide intermediate is discussed in relation to the chemical structure of luciferin molecules from bioluminescent organisms.