Parallel execution of distributed SVM using MPI (CoDLib)

Nur Shakirah Md Salleh, A. Suliman, A. Ahmad
{"title":"Parallel execution of distributed SVM using MPI (CoDLib)","authors":"Nur Shakirah Md Salleh, A. Suliman, A. Ahmad","doi":"10.1109/ICIMU.2011.6122723","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is an efficient data mining approach for data classification. However, SVM algorithm requires very large memory requirement and computational time to deal with very large dataset. To reduce the computational time during the process of training the SVM, a combination of distributed and parallel computing method, CoDLib have been proposed. Instead of using a single machine for parallel computing, multiple machines in a cluster are used. Message Passing Interface (MPI) is used in the communication between machines in the cluster. The original dataset is split and distributed to the respective machines. Experiments results shows a great speed up on the training of the MNIST dataset where training time has been significantly reduced compared with standard LIBSVM without affecting the quality of the SVM.","PeriodicalId":102808,"journal":{"name":"ICIMU 2011 : Proceedings of the 5th international Conference on Information Technology & Multimedia","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICIMU 2011 : Proceedings of the 5th international Conference on Information Technology & Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2011.6122723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Support Vector Machine (SVM) is an efficient data mining approach for data classification. However, SVM algorithm requires very large memory requirement and computational time to deal with very large dataset. To reduce the computational time during the process of training the SVM, a combination of distributed and parallel computing method, CoDLib have been proposed. Instead of using a single machine for parallel computing, multiple machines in a cluster are used. Message Passing Interface (MPI) is used in the communication between machines in the cluster. The original dataset is split and distributed to the respective machines. Experiments results shows a great speed up on the training of the MNIST dataset where training time has been significantly reduced compared with standard LIBSVM without affecting the quality of the SVM.
基于MPI (CoDLib)的分布式支持向量机并行执行
支持向量机(SVM)是一种高效的数据挖掘方法。然而,支持向量机算法需要非常大的内存需求和计算时间来处理非常大的数据集。为了减少SVM训练过程中的计算时间,提出了一种分布式和并行计算相结合的方法——CoDLib。使用集群中的多台机器进行并行计算,而不是使用单个机器进行并行计算。消息传递接口(Message Passing Interface, MPI)用于集群中机器之间的通信。原始数据集被拆分并分发到各自的机器上。实验结果表明,在不影响SVM质量的前提下,MNIST数据集的训练速度大大提高,训练时间比标准LIBSVM显著缩短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信