Convex cocompact actions of relatively hyperbolic groups

Mitul Islam, Andrew M. Zimmer
{"title":"Convex cocompact actions of relatively hyperbolic groups","authors":"Mitul Islam, Andrew M. Zimmer","doi":"10.2140/gt.2023.27.417","DOIUrl":null,"url":null,"abstract":"In this paper we consider discrete groups in ${\\rm PGL}_d(\\mathbb{R})$ acting convex co-compactly on a properly convex domain in real projective space. For such groups, we establish necessary and sufficient conditions for the group to be relatively hyperbolic in terms of the geometry of the convex domain. This answers a question of Danciger-Gu\\'eritaud-Kassel and is analogous to a result of Hruska-Kleiner for ${\\rm CAT}(0)$ spaces.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider discrete groups in ${\rm PGL}_d(\mathbb{R})$ acting convex co-compactly on a properly convex domain in real projective space. For such groups, we establish necessary and sufficient conditions for the group to be relatively hyperbolic in terms of the geometry of the convex domain. This answers a question of Danciger-Gu\'eritaud-Kassel and is analogous to a result of Hruska-Kleiner for ${\rm CAT}(0)$ spaces.
相对双曲群的凸紧作用
本文研究了实投影空间中${\rm PGL}_d(\mathbb{R})$上的离散群在适当凸域上的凸协紧作用。对于这类群,我们从凸域的几何构造上建立了群是相对双曲的充分必要条件。这回答了Danciger-Gu\' itriaud - kassel的一个问题,并且类似于Hruska-Kleiner对于${\rm CAT}(0)$空格的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信