Asymptotic capacity of a random channel

Tobias Sutter, David Sutter, J. Lygeros
{"title":"Asymptotic capacity of a random channel","authors":"Tobias Sutter, David Sutter, J. Lygeros","doi":"10.3934/amc.2017060","DOIUrl":null,"url":null,"abstract":"We consider discrete memoryless channels with input and output alphabet size n whose channel transition matrix consists of entries that are independent and identically distributed according to some probability distribution v on (R≥0, B(R≥0)) before being normalized, where v is such that E[X log X)<sup>2</sup> 1 <; ∞, μ<sub>1</sub> := E[X] and μ<sub>2</sub> := E[X log X] for a random variable X with distribution v. We prove that in the limit as n → ∞, the capacity of such a channel converges to μ<sub>2</sub>/μ<sub>1</sub> - log μ<sub>1</sub> almost surely and in L<sup>2</sup>. We further show that the capacity of these random channels converges to this asymptotic value exponentially in n.","PeriodicalId":330880,"journal":{"name":"2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/amc.2017060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider discrete memoryless channels with input and output alphabet size n whose channel transition matrix consists of entries that are independent and identically distributed according to some probability distribution v on (R≥0, B(R≥0)) before being normalized, where v is such that E[X log X)2 1 <; ∞, μ1 := E[X] and μ2 := E[X log X] for a random variable X with distribution v. We prove that in the limit as n → ∞, the capacity of such a channel converges to μ21 - log μ1 almost surely and in L2. We further show that the capacity of these random channels converges to this asymptotic value exponentially in n.
随机信道的渐近容量
我们考虑离散无记忆信道的输入和输出字母大小为n通道转移矩阵的条目包括独立且同分布根据一些概率分布v (R≥0,B (R≥0))在标准化之前,v在哪里,E (X日志)2 1 1:= E (X)和μ2:= E (X日志)与分布随机变量X诉我们证明极限n→∞,这样一个信道的容量收敛于日志μμ2 /μ1 - 1几乎肯定在L2。我们进一步证明了这些随机信道的容量在n上指数收敛于这个渐近值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信