Fast Equal-Area Mapping of the (Hemi)Sphere using SIMD

Petrik Clarberg
{"title":"Fast Equal-Area Mapping of the (Hemi)Sphere using SIMD","authors":"Petrik Clarberg","doi":"10.1080/2151237X.2008.10129263","DOIUrl":null,"url":null,"abstract":"We present a fast vectorized implementation of a transform that maps points in the unit square to the surface of the sphere, while preserving fractional area. The mapping uses the octahedral map combined with an equal-area parameterization and has many desirable features such as low distortion, straightforward interpolation, and fast inverse and forward transforms. Our SIMD implementation completely avoids branching and uses polynomial approximations for the trigonometric operations, as well as other tricks. This results in up to 9 times speed-up over a traditional scalar implementation. Source code is available online.","PeriodicalId":318334,"journal":{"name":"Journal of Graphics Tools","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graphics Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2151237X.2008.10129263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We present a fast vectorized implementation of a transform that maps points in the unit square to the surface of the sphere, while preserving fractional area. The mapping uses the octahedral map combined with an equal-area parameterization and has many desirable features such as low distortion, straightforward interpolation, and fast inverse and forward transforms. Our SIMD implementation completely avoids branching and uses polynomial approximations for the trigonometric operations, as well as other tricks. This results in up to 9 times speed-up over a traditional scalar implementation. Source code is available online.
基于SIMD的半球面快速等面积映射
我们提出了一种变换的快速矢量化实现,该变换将单位正方形中的点映射到球体表面,同时保留分数面积。该映射采用八面体映射和等面积参数化相结合的方法,具有低失真、直接插值、快速逆正变换等特点。我们的SIMD实现完全避免了分支,并对三角运算使用多项式近似,以及其他技巧。这使得速度比传统的标量实现提高了9倍。源代码可在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信