Faster Detours in Undirected Graphs

Shyan S. Akmal, V. V. Williams, Ryan Williams, Zixuan Xu
{"title":"Faster Detours in Undirected Graphs","authors":"Shyan S. Akmal, V. V. Williams, Ryan Williams, Zixuan Xu","doi":"10.48550/arXiv.2307.01781","DOIUrl":null,"url":null,"abstract":"The $k$-Detour problem is a basic path-finding problem: given a graph $G$ on $n$ vertices, with specified nodes $s$ and $t$, and a positive integer $k$, the goal is to determine if $G$ has an $st$-path of length exactly $\\text{dist}(s, t) + k$, where $\\text{dist}(s, t)$ is the length of a shortest path from $s$ to $t$. The $k$-Detour problem is NP-hard when $k$ is part of the input, so researchers have sought efficient parameterized algorithms for this task, running in $f(k)\\text{poly}(n)$ time, for $f$ as slow-growing as possible. We present faster algorithms for $k$-Detour in undirected graphs, running in $1.853^k \\text{poly}(n)$ randomized and $4.082^k \\text{poly}(n)$ deterministic time. The previous fastest algorithms for this problem took $2.746^k \\text{poly}(n)$ randomized and $6.523^k \\text{poly}(n)$ deterministic time [Bez\\'akov\\'a-Curticapean-Dell-Fomin, ICALP 2017]. Our algorithms use the fact that detecting a path of a given length in an undirected graph is easier if we are promised that the path belongs to what we call a\"bipartitioned\"subgraph, where the nodes are split into two parts and the path must satisfy constraints on those parts. Previously, this idea was used to obtain the fastest known algorithm for finding paths of length $k$ in undirected graphs [Bj\\\"orklund-Husfeldt-Kaski-Koivisto, JCSS 2017]. Our work has direct implications for the $k$-Longest Detour problem: in this problem, we are given the same input as in $k$-Detour, but are now tasked with determining if $G$ has an $st$-path of length at least $\\text{dist}(s, t) + k.$ Our results for k-Detour imply that we can solve $k$-Longest Detour in $3.432^k \\text{poly}(n)$ randomized and $16.661^k \\text{poly}(n)$ deterministic time. The previous fastest algorithms for this problem took $7.539^k \\text{poly}(n)$ randomized and $42.549^k \\text{poly}(n)$ deterministic time [Fomin et al., STACS 2022].","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.01781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The $k$-Detour problem is a basic path-finding problem: given a graph $G$ on $n$ vertices, with specified nodes $s$ and $t$, and a positive integer $k$, the goal is to determine if $G$ has an $st$-path of length exactly $\text{dist}(s, t) + k$, where $\text{dist}(s, t)$ is the length of a shortest path from $s$ to $t$. The $k$-Detour problem is NP-hard when $k$ is part of the input, so researchers have sought efficient parameterized algorithms for this task, running in $f(k)\text{poly}(n)$ time, for $f$ as slow-growing as possible. We present faster algorithms for $k$-Detour in undirected graphs, running in $1.853^k \text{poly}(n)$ randomized and $4.082^k \text{poly}(n)$ deterministic time. The previous fastest algorithms for this problem took $2.746^k \text{poly}(n)$ randomized and $6.523^k \text{poly}(n)$ deterministic time [Bez\'akov\'a-Curticapean-Dell-Fomin, ICALP 2017]. Our algorithms use the fact that detecting a path of a given length in an undirected graph is easier if we are promised that the path belongs to what we call a"bipartitioned"subgraph, where the nodes are split into two parts and the path must satisfy constraints on those parts. Previously, this idea was used to obtain the fastest known algorithm for finding paths of length $k$ in undirected graphs [Bj\"orklund-Husfeldt-Kaski-Koivisto, JCSS 2017]. Our work has direct implications for the $k$-Longest Detour problem: in this problem, we are given the same input as in $k$-Detour, but are now tasked with determining if $G$ has an $st$-path of length at least $\text{dist}(s, t) + k.$ Our results for k-Detour imply that we can solve $k$-Longest Detour in $3.432^k \text{poly}(n)$ randomized and $16.661^k \text{poly}(n)$ deterministic time. The previous fastest algorithms for this problem took $7.539^k \text{poly}(n)$ randomized and $42.549^k \text{poly}(n)$ deterministic time [Fomin et al., STACS 2022].
无向图中更快的弯路
$k$-Detour问题是一个基本的寻路问题:给定一个有$n$个顶点的图$G$,具有指定的节点$s$和$t$,以及一个正整数$k$,目标是确定$G$是否具有长度恰好为$\text{dist}(s, t) + k$的$st$-path,其中$\text{dist}(s, t)$是从$s$到$t$的最短路径的长度。当$k$作为输入的一部分时,$k$-Detour问题是np困难的,因此研究人员已经为这项任务寻找了有效的参数化算法,在$f(k)\text{poly}(n)$时间内运行,使$f$尽可能缓慢增长。我们提出了无向图中$k$-Detour的更快算法,运行时间为$1.853^k \text{poly}(n)$随机化和$4.082^k \text{poly}(n)$确定性。该问题之前最快的算法花费$2.746^k \text{poly}(n)$随机时间和$6.523^k \text{poly}(n)$确定性时间[Bez\'akov\'a-Curticapean-Dell-Fomin, ICALP 2017]。我们的算法使用了这样一个事实,即如果我们承诺路径属于我们所谓的“双分区”子图,那么在无向图中检测给定长度的路径会更容易,其中节点被分成两部分,路径必须满足这些部分的约束。以前,这个想法被用来获得在无向图中寻找长度为$k$的路径的已知最快算法[j\"orklund-Husfeldt-Kaski-Koivisto, JCSS 2017]。我们的工作对$k$-Longest Detour问题有直接的影响:在这个问题中,我们得到了与$k$-Detour相同的输入,但现在的任务是确定$G$是否有一个长度至少为$\text{dist}(s, t) + k的$st$-路径。我们对k-Detour的结果表明,我们可以在$3.432^k \text{poly}(n)$随机化和$16.661^k \text{poly}(n)$确定性时间内解决$k$-Longest Detour。该问题之前最快的算法花费$7.539^k \text{poly}(n)$随机化时间和$42.549^k \text{poly}(n)$确定性时间[Fomin et al., STACS 2022]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信