On the Asymptotic Sample Complexity of HGR Maximal Correlation Functions in Semi-supervised Learning

Xiangxiang Xu, Shao-Lun Huang
{"title":"On the Asymptotic Sample Complexity of HGR Maximal Correlation Functions in Semi-supervised Learning","authors":"Xiangxiang Xu, Shao-Lun Huang","doi":"10.1109/ALLERTON.2019.8919892","DOIUrl":null,"url":null,"abstract":"The Hirschfeld-Gebelein-Rényi (HGR) maximal correlation has been shown useful in many machine learning applications, where the alternating conditional expectation (ACE) algorithm is widely adopted to estimate the HGR maximal correlation functions from data samples. In this paper, we consider the asymptotic sample complexity of estimating the HGR maximal correlation functions in semi-supervised learning, where both labeled and unlabeled data samples are used for the estimation. First, we propose a generalized ACE algorithm to deal with the unlabeled data samples. Then, we develop a mathematical framework to characterize the learning errors between the maximal correlation functions computed from the true distribution and the functions estimated from the generalized ACE algorithm. We establish the analytical expressions for the error exponents of the learning errors, which indicate the number of training samples required for estimating the HGR maximal correlation functions by the generalized ACE algorithm. Moreover, with our theoretical results, we investigate the sampling strategy for different types of samples in semisupervised learning with a total sampling budget constraint, and an optimal sampling strategy is developed to maximize the error exponent of the learning error. Finally, the numerical simulations are presented to support our theoretical results.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Hirschfeld-Gebelein-Rényi (HGR) maximal correlation has been shown useful in many machine learning applications, where the alternating conditional expectation (ACE) algorithm is widely adopted to estimate the HGR maximal correlation functions from data samples. In this paper, we consider the asymptotic sample complexity of estimating the HGR maximal correlation functions in semi-supervised learning, where both labeled and unlabeled data samples are used for the estimation. First, we propose a generalized ACE algorithm to deal with the unlabeled data samples. Then, we develop a mathematical framework to characterize the learning errors between the maximal correlation functions computed from the true distribution and the functions estimated from the generalized ACE algorithm. We establish the analytical expressions for the error exponents of the learning errors, which indicate the number of training samples required for estimating the HGR maximal correlation functions by the generalized ACE algorithm. Moreover, with our theoretical results, we investigate the sampling strategy for different types of samples in semisupervised learning with a total sampling budget constraint, and an optimal sampling strategy is developed to maximize the error exponent of the learning error. Finally, the numerical simulations are presented to support our theoretical results.
半监督学习中HGR极大相关函数的渐近样本复杂度
hirschfeld - gebelein - r尼米(HGR)最大相关函数在许多机器学习应用中被证明是有用的,其中交替条件期望(ACE)算法被广泛采用来从数据样本中估计HGR最大相关函数。本文考虑了半监督学习中估计HGR最大相关函数的渐近样本复杂度,其中使用了标记和未标记的数据样本进行估计。首先,我们提出了一种通用的ACE算法来处理未标记的数据样本。然后,我们建立了一个数学框架来表征从真实分布计算的最大相关函数与从广义ACE算法估计的函数之间的学习误差。我们建立了学习误差的误差指数的解析表达式,它表示用广义ACE算法估计HGR最大相关函数所需的训练样本数。在此基础上,研究了在总抽样预算约束下半监督学习中不同样本类型的抽样策略,并给出了使学习误差的误差指数最大化的最优抽样策略。最后,通过数值模拟对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信