Resonant Frequency Modeling of Coplanar Waveguide Dual-Frequency Antenna Based on Prior Knowledge Gaussian Process

Yumeng Jiang, Yubo Tian, Xie Zheng
{"title":"Resonant Frequency Modeling of Coplanar Waveguide Dual-Frequency Antenna Based on Prior Knowledge Gaussian Process","authors":"Yumeng Jiang, Yubo Tian, Xie Zheng","doi":"10.23919/ACES48530.2019.9060706","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of Gaussian process machine learning to solve the problem of low efficiency caused by too many samples in the process of antenna modeling, a Gaussian process modeling method based on prior knowledge is proposed. The input sample of the model is the size parameter of the antenna, and the output sample is the difference of the electromagnetic simulation calculation result and the prior knowledge, thus establishing the Gaussian process model. This modeling method is used to model the resonant frequency of the coplanar waveguide feed dual-frequency microstrip antenna, and the error result is ideal. It is shown that the Gaussian process model based on prior knowledge can replace the electromagnetic simulation software, improve the modeling speed, and prove the feasibility of the method.","PeriodicalId":247909,"journal":{"name":"2019 International Applied Computational Electromagnetics Society Symposium - China (ACES)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Applied Computational Electromagnetics Society Symposium - China (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACES48530.2019.9060706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of Gaussian process machine learning to solve the problem of low efficiency caused by too many samples in the process of antenna modeling, a Gaussian process modeling method based on prior knowledge is proposed. The input sample of the model is the size parameter of the antenna, and the output sample is the difference of the electromagnetic simulation calculation result and the prior knowledge, thus establishing the Gaussian process model. This modeling method is used to model the resonant frequency of the coplanar waveguide feed dual-frequency microstrip antenna, and the error result is ideal. It is shown that the Gaussian process model based on prior knowledge can replace the electromagnetic simulation software, improve the modeling speed, and prove the feasibility of the method.
基于先验知识高斯过程的共面波导双频天线谐振频率建模
针对高斯过程机器学习在天线建模过程中由于样本过多导致效率低下的问题,提出了一种基于先验知识的高斯过程建模方法。模型的输入样本为天线的尺寸参数,输出样本为电磁仿真计算结果与先验知识的差值,从而建立高斯过程模型。利用该建模方法对共面波导馈电双频微带天线的谐振频率进行了建模,得到了理想的误差结果。结果表明,基于先验知识的高斯过程模型可以代替电磁仿真软件,提高建模速度,证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信