{"title":"Image De-Speckling Based on the Coefficient of Variation, Improved Guided Filter, and Fast Bilateral Filter","authors":"Hadi Salehi","doi":"10.1142/s021946782250036x","DOIUrl":null,"url":null,"abstract":"Images are widely used in engineering. Unfortunately, medical ultrasound images and synthetic aperture radar (SAR) images are mainly degraded by an intrinsic noise called speckle. Therefore, de-speckling is a main pre-processing stage for degraded images. In this paper, first, an optimized adaptive Wiener filter (OAWF) is proposed. OAWF can be applied to the input image without the need for logarithmic transform. In addition its performance is improved. Next, the coefficient of variation (CV) is computed from the input image. With the help of CV, the guided filter converts to an improved guided filter (IGF). Next, the improved guided filter is applied on the image. Subsequently, the fast bilateral filter is applied on the image. The proposed filter has a better image detail preservation compared to some other standard methods. The experimental outcomes show that the proposed denoising algorithm is able to preserve image details and edges compared with other de-speckling methods.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021946782250036x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Images are widely used in engineering. Unfortunately, medical ultrasound images and synthetic aperture radar (SAR) images are mainly degraded by an intrinsic noise called speckle. Therefore, de-speckling is a main pre-processing stage for degraded images. In this paper, first, an optimized adaptive Wiener filter (OAWF) is proposed. OAWF can be applied to the input image without the need for logarithmic transform. In addition its performance is improved. Next, the coefficient of variation (CV) is computed from the input image. With the help of CV, the guided filter converts to an improved guided filter (IGF). Next, the improved guided filter is applied on the image. Subsequently, the fast bilateral filter is applied on the image. The proposed filter has a better image detail preservation compared to some other standard methods. The experimental outcomes show that the proposed denoising algorithm is able to preserve image details and edges compared with other de-speckling methods.