Application of WOA-VMD-SVM in Fault Diagnosis of Generator Inter-turn Short Circuit

Jing Huang, Ruping Lin, Zhiguo He, Huishu Song, Xiaosheng Huang, Binyi Chen
{"title":"Application of WOA-VMD-SVM in Fault Diagnosis of Generator Inter-turn Short Circuit","authors":"Jing Huang, Ruping Lin, Zhiguo He, Huishu Song, Xiaosheng Huang, Binyi Chen","doi":"10.1109/cac57257.2022.10055106","DOIUrl":null,"url":null,"abstract":"This paper proposes a feature extraction method based on whale optimization algorithm and variational mode decomposition (WOA-VMD) to overcome the low feature extraction accuracy of generator early inter-turn short circuit fault. WOA-VMD process the current signal, and the sample entropy is taken as the fitness function of WOA to optimize the VMD parameter combination of modal components' number K and penalty parament α. Then, the optimized VMD decomposes current signals into K intrinsic mode functions (IMFs). IMFs with higher kurtosis values are selected to extract energy entropy as the feature vectors. Finally, the whale optimization algorithm and support vector machine (WOA-SVM) pattern recognition model is used to classify the feature vectors and diagnose generator inter-turn short circuit degree. The experiments show that the proposed method extracts the weak fault features in the early inter-turn short circuit signal and improves the fault diagnosis accuracy, reaching 97.75%.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cac57257.2022.10055106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a feature extraction method based on whale optimization algorithm and variational mode decomposition (WOA-VMD) to overcome the low feature extraction accuracy of generator early inter-turn short circuit fault. WOA-VMD process the current signal, and the sample entropy is taken as the fitness function of WOA to optimize the VMD parameter combination of modal components' number K and penalty parament α. Then, the optimized VMD decomposes current signals into K intrinsic mode functions (IMFs). IMFs with higher kurtosis values are selected to extract energy entropy as the feature vectors. Finally, the whale optimization algorithm and support vector machine (WOA-SVM) pattern recognition model is used to classify the feature vectors and diagnose generator inter-turn short circuit degree. The experiments show that the proposed method extracts the weak fault features in the early inter-turn short circuit signal and improves the fault diagnosis accuracy, reaching 97.75%.
WOA-VMD-SVM在发电机匝间短路故障诊断中的应用
针对发电机早期匝间短路故障特征提取精度低的问题,提出了一种基于鲸鱼优化算法和变分模态分解(WOA-VMD)的特征提取方法。WOA-VMD对电流信号进行处理,以样本熵作为WOA的适应度函数,优化模态分量K和惩罚分量α的VMD参数组合。然后,优化后的VMD将电流信号分解为K个本征模态函数(IMFs)。选取峰度较高的imf提取能量熵作为特征向量。最后,利用鲸鱼优化算法和支持向量机(WOA-SVM)模式识别模型对特征向量进行分类,诊断发电机匝间短路程度。实验表明,该方法提取出匝间早期短路信号中的微弱故障特征,提高了故障诊断准确率,达到97.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信