A class of invertible circulant matrices for QC-LDPC codes

M. Baldi, F. Bambozzi, F. Chiaraluce
{"title":"A class of invertible circulant matrices for QC-LDPC codes","authors":"M. Baldi, F. Bambozzi, F. Chiaraluce","doi":"10.1109/ISITA.2008.4895413","DOIUrl":null,"url":null,"abstract":"This paper presents a new class of easily invertible circulant matrices, defined by exploiting the isomorphism from the ring Mn of n times n circulant matrices over GF(p) to the ring Rn = GF(p)[x]/(xn - 1) of the polynomials modulo (xn - 1). Such class contains matrices free of 4-length cycles that, if sparse, can be included in the parity check matrix of QC-LDPC codes. Bounds for the weight of their inverses are also determined, that are useful for designing sparse generator matrices for these error correcting codes.","PeriodicalId":338675,"journal":{"name":"2008 International Symposium on Information Theory and Its Applications","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Information Theory and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITA.2008.4895413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new class of easily invertible circulant matrices, defined by exploiting the isomorphism from the ring Mn of n times n circulant matrices over GF(p) to the ring Rn = GF(p)[x]/(xn - 1) of the polynomials modulo (xn - 1). Such class contains matrices free of 4-length cycles that, if sparse, can be included in the parity check matrix of QC-LDPC codes. Bounds for the weight of their inverses are also determined, that are useful for designing sparse generator matrices for these error correcting codes.
一类QC-LDPC码的可逆循环矩阵
利用GF(p)上n乘以n个循环矩阵的环Mn到多项式模(xn - 1)的环Rn = GF(p)[x]/(xn - 1)的同构性,给出了一类新的易可逆循环矩阵。该类包含不含4长度循环的矩阵,如果稀疏,可以包含在QC-LDPC码的奇偶校验矩阵中。还确定了它们的逆权值的界,这对设计这些纠错码的稀疏生成器矩阵很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信