RLS channel estimation with superimposed training sequence in OFDM systems

Junping Li, Jie Ma, Shouyin Liu
{"title":"RLS channel estimation with superimposed training sequence in OFDM systems","authors":"Junping Li, Jie Ma, Shouyin Liu","doi":"10.1109/ICCT.2008.4716183","DOIUrl":null,"url":null,"abstract":"In this paper, A Recursive Least Squares (RLS) channel estimator with improved decision-directed algorithm (referred as DDA2-RLS) is proposed based on the superimposed training sequence in orthogonal frequency division multiplexing (OFDM) systems. The DDA2-RLS is exploited to further eliminate the interference driven by the superimposed unknown information data. Then, the theoretical analysis for DDA2-RLS algorithm with superimposed training sequence that uses the constant Pseudo-Noise (PN) sequence is given. It is shown that the proposed DDA2-RLS algorithm can improve the channel estimation performance compared with the original RLS and decision-directed algorithm (DDA) RLS algorithms. Simulations results demonstrate the effectiveness of the proposed DDA2-RLS, and the performance is close to the theoretical analysis compared with original RLS and DDA-RLS algorithms.","PeriodicalId":259577,"journal":{"name":"2008 11th IEEE International Conference on Communication Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 11th IEEE International Conference on Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2008.4716183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, A Recursive Least Squares (RLS) channel estimator with improved decision-directed algorithm (referred as DDA2-RLS) is proposed based on the superimposed training sequence in orthogonal frequency division multiplexing (OFDM) systems. The DDA2-RLS is exploited to further eliminate the interference driven by the superimposed unknown information data. Then, the theoretical analysis for DDA2-RLS algorithm with superimposed training sequence that uses the constant Pseudo-Noise (PN) sequence is given. It is shown that the proposed DDA2-RLS algorithm can improve the channel estimation performance compared with the original RLS and decision-directed algorithm (DDA) RLS algorithms. Simulations results demonstrate the effectiveness of the proposed DDA2-RLS, and the performance is close to the theoretical analysis compared with original RLS and DDA-RLS algorithms.
OFDM系统中基于叠加训练序列的RLS信道估计
本文基于正交频分复用(OFDM)系统中的叠加训练序列,提出了一种改进决策导向算法的递推最小二乘(RLS)信道估计器(DDA2-RLS)。利用DDA2-RLS进一步消除叠加未知信息数据带来的干扰。然后,对采用恒伪噪声(PN)序列的DDA2-RLS算法进行了理论分析。结果表明,与原有的RLS算法和决策导向算法(DDA) RLS算法相比,本文提出的DDA2-RLS算法可以提高信道估计的性能。仿真结果验证了所提DDA2-RLS算法的有效性,与原始RLS算法和DDA2-RLS算法相比,其性能接近理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信