Design and Analysis of Wideband Antenna with Application to Ground Penetrating Radar System

G. Atteia, K. Hussein, A. Shaalan
{"title":"Design and Analysis of Wideband Antenna with Application to Ground Penetrating Radar System","authors":"G. Atteia, K. Hussein, A. Shaalan","doi":"10.1109/NRSC.2007.371353","DOIUrl":null,"url":null,"abstract":"In this paper, a wide band antenna is proposed for ground-penetrating radar (GPR) system. This antenna consists of dipole antenna housed in a rectangular conducting reflector whose inner walls are coated by an absorbing material. The coating is composed of a number of layers with a conductivity profile designed to achieve the minimum voltage standing wave ratio (VSWR) of the dipole antenna over the frequency band of operation. The antenna impedance and VSWR are calculated using the finite-difference time-domain (FDTD) method. The antenna impedance and VSWR are presented over a wide-band of frequency. The capability of buried target detection by the proposed antenna is examined by investigating the coupling between the transmitting and receiving antennas in the presence and absence of buried targets. The operating bandwidth of the antenna is shown to be about 50%. The effect of the ground soil on the antenna characteristics is studied when the GPR system is placed at different heights above such a soil. The GPR system with the proposed antenna is shown to be capable of detecting the existence of buried targets.","PeriodicalId":177282,"journal":{"name":"2007 National Radio Science Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 National Radio Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2007.371353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a wide band antenna is proposed for ground-penetrating radar (GPR) system. This antenna consists of dipole antenna housed in a rectangular conducting reflector whose inner walls are coated by an absorbing material. The coating is composed of a number of layers with a conductivity profile designed to achieve the minimum voltage standing wave ratio (VSWR) of the dipole antenna over the frequency band of operation. The antenna impedance and VSWR are calculated using the finite-difference time-domain (FDTD) method. The antenna impedance and VSWR are presented over a wide-band of frequency. The capability of buried target detection by the proposed antenna is examined by investigating the coupling between the transmitting and receiving antennas in the presence and absence of buried targets. The operating bandwidth of the antenna is shown to be about 50%. The effect of the ground soil on the antenna characteristics is studied when the GPR system is placed at different heights above such a soil. The GPR system with the proposed antenna is shown to be capable of detecting the existence of buried targets.
应用于探地雷达系统的宽带天线设计与分析
本文提出了一种用于探地雷达系统的宽带天线。这种天线由偶极子天线组成,它被安置在一个矩形的导电反射器中,反射器的内壁被吸收材料覆盖。该涂层由若干层组成,其电导率曲线旨在实现偶极子天线在工作频带上的最小电压驻波比(VSWR)。采用时域有限差分法计算天线阻抗和驻波比。天线阻抗和驻波比在宽频带范围内呈现。通过研究发射天线和接收天线在存在和不存在地埋目标时的耦合情况,检验了该天线探测地埋目标的能力。天线的工作带宽约为50%。研究了地面土壤对探地雷达系统在地面土壤上不同高度放置时天线特性的影响。采用该天线的探地雷达系统具有探测地埋目标的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信