Normal Bisimulation for Higher Order Pi-Calculus with Unguarded Choice

Zining Cao
{"title":"Normal Bisimulation for Higher Order Pi-Calculus with Unguarded Choice","authors":"Zining Cao","doi":"10.1109/TASE.2014.15","DOIUrl":null,"url":null,"abstract":"In this paper, we present a normal bisimulation for higher order pi-calculus with unguarded choice and prove the coincidence between such normal bisimulation and context bisimulation for higher order π-calculus with unguarded choice. To achieve this aim, we introduce indexed higher order π-calculus with unguarded choice. Furthermore we present corresponding indexed bisimulations in this calculus, and prove the equivalence between indexed context bisimulation and indexed normal bisimulation. As an application of this result, we prove the equivalence between context bisimulation and normal bisimulation for higher order π-calculus with unguarded choice.","PeriodicalId":371040,"journal":{"name":"2014 Theoretical Aspects of Software Engineering Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Theoretical Aspects of Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASE.2014.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a normal bisimulation for higher order pi-calculus with unguarded choice and prove the coincidence between such normal bisimulation and context bisimulation for higher order π-calculus with unguarded choice. To achieve this aim, we introduce indexed higher order π-calculus with unguarded choice. Furthermore we present corresponding indexed bisimulations in this calculus, and prove the equivalence between indexed context bisimulation and indexed normal bisimulation. As an application of this result, we prove the equivalence between context bisimulation and normal bisimulation for higher order π-calculus with unguarded choice.
具有无保护选择的高阶pi -微积分的正规双模拟
本文给出了具有无保护选择的高阶π-微积分的正规双模拟,并证明了这种正规双模拟与具有无保护选择的高阶π-微积分的情境双模拟的一致性。为了达到这一目的,我们引入了带无保护选择的指数高阶π微积分。在此基础上给出了相应的索引双模拟,并证明了索引上下文双模拟与索引正规双模拟的等价性。作为这一结果的应用,我们证明了具有无保护选择的高阶π微积分的上下文双模拟与正规双模拟的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信