Differentially Private Synthetic Mixed-Type Data Generation For Unsupervised Learning

U. Tantipongpipat, Chris Waites, Digvijay Boob, Amaresh Ankit Siva, Rachel Cummings
{"title":"Differentially Private Synthetic Mixed-Type Data Generation For Unsupervised Learning","authors":"U. Tantipongpipat, Chris Waites, Digvijay Boob, Amaresh Ankit Siva, Rachel Cummings","doi":"10.1109/IISA52424.2021.9555521","DOIUrl":null,"url":null,"abstract":"We introduce the DP-auto-GAN framework for synthetic data generation, which combines the low dimensional representation of autoencoders with the flexibility of Generative Adversarial Networks (GANs). This framework can be used to take in raw sensitive data and privately train a model for generating synthetic data that will satisfy similar statistical properties as the original data. This learned model can generate an arbitrary amount of synthetic data, which can then be freely shared due to the post-processing guarantee of differential privacy. Our framework is applicable to unlabeled mixed-type data, that may include binary, categorical, and real-valued data. We implement this framework on both binary data (MIMIC-III) and mixed-type data (ADULT), and compare its performance with existing private algorithms on metrics in unsupervised settings. We also introduce a new quantitative metric able to detect diversity, or lack thereof, of synthetic data.","PeriodicalId":437496,"journal":{"name":"2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA52424.2021.9555521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We introduce the DP-auto-GAN framework for synthetic data generation, which combines the low dimensional representation of autoencoders with the flexibility of Generative Adversarial Networks (GANs). This framework can be used to take in raw sensitive data and privately train a model for generating synthetic data that will satisfy similar statistical properties as the original data. This learned model can generate an arbitrary amount of synthetic data, which can then be freely shared due to the post-processing guarantee of differential privacy. Our framework is applicable to unlabeled mixed-type data, that may include binary, categorical, and real-valued data. We implement this framework on both binary data (MIMIC-III) and mixed-type data (ADULT), and compare its performance with existing private algorithms on metrics in unsupervised settings. We also introduce a new quantitative metric able to detect diversity, or lack thereof, of synthetic data.
基于非监督学习的差分私有合成混合类型数据生成
我们引入了用于合成数据生成的DP-auto-GAN框架,该框架将自编码器的低维表示与生成对抗网络(gan)的灵活性相结合。该框架可用于接收原始敏感数据并私下训练模型,以生成满足与原始数据相似统计属性的合成数据。该学习模型可以生成任意数量的合成数据,由于后处理的差分隐私保证,这些合成数据可以自由共享。我们的框架适用于未标记的混合类型数据,其中可能包括二进制、分类和实值数据。我们在二进制数据(MIMIC-III)和混合类型数据(ADULT)上实现了该框架,并将其性能与现有的私有算法在无监督设置下的指标进行了比较。我们还引入了一种新的定量度量,能够检测合成数据的多样性或缺乏多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信