Automatic Web Query Classification Using Large Unlabeled Web Pages

Jingbo Yu, Na Ye
{"title":"Automatic Web Query Classification Using Large Unlabeled Web Pages","authors":"Jingbo Yu, Na Ye","doi":"10.1109/WAIM.2008.91","DOIUrl":null,"url":null,"abstract":"In this paper, a novel and simple method is employed to automatically construct domain knowledge base for query classification from large-scale Web pages. Besides, using context as the feature of words, the resource of relevant words is built automatically in order to extend the user's query. On the basis of domain knowledge base and extension of the query using relevant words, satisfactory performance in query classification is achieved. Experimental results demonstrate that our method achieves precision of 77.68% and recall of 75.34% in Chinese query classification. In English experiments, in spite of the scarcity of English Web pages and absence of stemming, precision achieves 58.83% and recall achieves 54.13%, which is a great improvement compared to state-of-the-art query classification algorithms.","PeriodicalId":217119,"journal":{"name":"2008 The Ninth International Conference on Web-Age Information Management","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Ninth International Conference on Web-Age Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAIM.2008.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, a novel and simple method is employed to automatically construct domain knowledge base for query classification from large-scale Web pages. Besides, using context as the feature of words, the resource of relevant words is built automatically in order to extend the user's query. On the basis of domain knowledge base and extension of the query using relevant words, satisfactory performance in query classification is achieved. Experimental results demonstrate that our method achieves precision of 77.68% and recall of 75.34% in Chinese query classification. In English experiments, in spite of the scarcity of English Web pages and absence of stemming, precision achieves 58.83% and recall achieves 54.13%, which is a great improvement compared to state-of-the-art query classification algorithms.
使用大型未标记网页的自动Web查询分类
本文采用一种新颖、简单的方法,从大规模Web页面中自动构建用于查询分类的领域知识库。并以语境为词的特征,自动构建相关词资源,扩展用户查询。在领域知识库的基础上,利用相关词对查询进行扩展,取得了令人满意的查询分类性能。实验结果表明,该方法在中文查询分类中准确率达到77.68%,召回率达到75.34%。在英语实验中,尽管缺乏英文网页和词干提取,但准确率达到58.83%,召回率达到54.13%,与目前最先进的查询分类算法相比有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信