A Study on the CBOW Model's Overfitting and Stability

Web-KR '14 Pub Date : 2014-11-03 DOI:10.1145/2663792.2663793
Qun Luo, Weiran Xu, Jun Guo
{"title":"A Study on the CBOW Model's Overfitting and Stability","authors":"Qun Luo, Weiran Xu, Jun Guo","doi":"10.1145/2663792.2663793","DOIUrl":null,"url":null,"abstract":"Word vectors are distributed representations of word features. Continuous Bag-of-Words Model(CBOW) is a state-of-the-art model for learning word vectors, yet can be ameliorated for learning better word vectors because we find that CBOW is vulnerable to be overfitted and unstable. We use two methods to solve these two problems so that CBOW can learn better word vectors. In this study, we add the regularized structure risk summation to the objective function of the CBOW model and propose inverse word frequency encoding for the CBOW model. Our proposed methods substantially improve the quality of word vectors, boosting r from 0.638 to 0.696 for word relatedness and total accuracy from 30.80% to 38.43% for word pairs relationship relatedness regarding to 52 million training words with 200 dimensionality.","PeriodicalId":289794,"journal":{"name":"Web-KR '14","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web-KR '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663792.2663793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Word vectors are distributed representations of word features. Continuous Bag-of-Words Model(CBOW) is a state-of-the-art model for learning word vectors, yet can be ameliorated for learning better word vectors because we find that CBOW is vulnerable to be overfitted and unstable. We use two methods to solve these two problems so that CBOW can learn better word vectors. In this study, we add the regularized structure risk summation to the objective function of the CBOW model and propose inverse word frequency encoding for the CBOW model. Our proposed methods substantially improve the quality of word vectors, boosting r from 0.638 to 0.696 for word relatedness and total accuracy from 30.80% to 38.43% for word pairs relationship relatedness regarding to 52 million training words with 200 dimensionality.
CBOW模型的过拟合及稳定性研究
词向量是词特征的分布表示。连续词袋模型(Continuous Bag-of-Words Model, CBOW)是一种学习词向量的最新模型,但由于CBOW容易过拟合和不稳定,因此可以改进以更好地学习词向量。我们使用两种方法来解决这两个问题,使CBOW能够更好地学习词向量。在本研究中,我们在CBOW模型的目标函数中加入正则化结构风险求和,并提出了CBOW模型的逆词频编码。我们提出的方法极大地提高了词向量的质量,对于5200万个200维的训练词,词相关性的r从0.638提高到0.696,词对关系相关性的总准确率从30.80%提高到38.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信