BiPart

Sepideh Maleki, U. Agarwal, Martin Burtscher, K. Pingali
{"title":"BiPart","authors":"Sepideh Maleki, U. Agarwal, Martin Burtscher, K. Pingali","doi":"10.1145/3437801.3441611","DOIUrl":null,"url":null,"abstract":"Hypergraph partitioning is used in many problem domains including VLSI design, linear algebra, Boolean satisfiability, and data mining. Most versions of this problem are NP-complete or NP-hard, so practical hypergraph partitioners generate approximate partitioning solutions for all but the smallest inputs. One way to speed up hypergraph partitioners is to exploit parallelism. However, existing parallel hypergraph partitioners are not deterministic, which is considered unacceptable in domains like VLSI design where the same partitions must be produced every time a given hypergraph is partitioned. In this paper, we describe BiPart, the first deterministic, parallel hypergraph partitioner. Experimental results show that BiPart outperforms state-of-the-art hypergraph partitioners in runtime and partition quality while generating partitions deterministically.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Hypergraph partitioning is used in many problem domains including VLSI design, linear algebra, Boolean satisfiability, and data mining. Most versions of this problem are NP-complete or NP-hard, so practical hypergraph partitioners generate approximate partitioning solutions for all but the smallest inputs. One way to speed up hypergraph partitioners is to exploit parallelism. However, existing parallel hypergraph partitioners are not deterministic, which is considered unacceptable in domains like VLSI design where the same partitions must be produced every time a given hypergraph is partitioned. In this paper, we describe BiPart, the first deterministic, parallel hypergraph partitioner. Experimental results show that BiPart outperforms state-of-the-art hypergraph partitioners in runtime and partition quality while generating partitions deterministically.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信