An optimized MLP model to diagnosis the bipolar disorder

M. Ghasemi, M. Khalili
{"title":"An optimized MLP model to diagnosis the bipolar disorder","authors":"M. Ghasemi, M. Khalili","doi":"10.14419/JACST.V4I1.4038","DOIUrl":null,"url":null,"abstract":"The use of artificial neural networks in different areas of engineering science is growing by the day. The significant proportions of research in medical engineering, Therefore in this paper have tried to implemented MLP model with 47 parameters for diagnosis of bipolar disorder. Parameters such as: lack of pleasure, feelings of guilt, worthlessness, lack of success, mental anxiety, somatic anxiety disorder, the disorder of interest, etc. in next part, we done the manipulation structure of MLP model, for this work switching the function in layers. And comparing the error of manipulation structure with previous manipulation. We concluded with using purelin function in layers, the error of diagnosis reduces 4% and this value is an acceptable value.","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/JACST.V4I1.4038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The use of artificial neural networks in different areas of engineering science is growing by the day. The significant proportions of research in medical engineering, Therefore in this paper have tried to implemented MLP model with 47 parameters for diagnosis of bipolar disorder. Parameters such as: lack of pleasure, feelings of guilt, worthlessness, lack of success, mental anxiety, somatic anxiety disorder, the disorder of interest, etc. in next part, we done the manipulation structure of MLP model, for this work switching the function in layers. And comparing the error of manipulation structure with previous manipulation. We concluded with using purelin function in layers, the error of diagnosis reduces 4% and this value is an acceptable value.
优化的MLP模型诊断双相情感障碍
人工神经网络在工程科学不同领域的应用日益增多。由于在医学工程方面的研究占很大比例,因此本文尝试将包含47个参数的MLP模型用于双相情感障碍的诊断。在接下来的部分中,我们对缺乏愉悦感、负罪感、无价值感、缺乏成功感、精神焦虑、躯体焦虑障碍、兴趣障碍等参数进行了MLP模型的操作结构,为本工作进行了功能的分层切换。并与以往的操纵结构误差进行了比较。我们的结论是,分层使用purelin函数,诊断误差降低了4%,这个值是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信