{"title":"The Role of SNR in Achieving MIMO Rates in Cooperative Systems","authors":"Chris T. K. Ng, J. N. Laneman, A. Goldsmith","doi":"10.1109/ITW.2006.1633831","DOIUrl":null,"url":null,"abstract":"We compare the rate of a multiple-antenna relay channel to the capacity of multiple-antenna systems to characterize the cooperative capacity in different SNR regions. While it is known that in the asymptotic regime, at a high SNR or with a large number of cooperating nodes, cooperative systems lack full multiplexing gain, in this paper we consider cooperative capacity gain at moderate SNR with a fixed number of cooperating antennas. We show that up to a lower bound to an SNR threshold, a cooperative system performs at least as well as a MIMO system with isotropic inputs; whereas beyond an upper bound to the SNR threshold, the cooperative system is limited by its coordination costs, and the capacity is strictly less than that of a MIMO orthogonal channel. The SNR threshold depends on the network geometry (the power gain g between the source and relay) and the number of cooperating antennas M; when the relay is close to the source (g [unk] 1), the SNR threshold lower and upper bounds are approximately equal. As the cooperating nodes are closer, i.e., as g increases, the MIMO-gain region extends to a higher SNR. Whereas for a populous cluster, i.e., when M is large, the coordination-limited region sets in at a lower SNR.","PeriodicalId":293144,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2006.1633831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We compare the rate of a multiple-antenna relay channel to the capacity of multiple-antenna systems to characterize the cooperative capacity in different SNR regions. While it is known that in the asymptotic regime, at a high SNR or with a large number of cooperating nodes, cooperative systems lack full multiplexing gain, in this paper we consider cooperative capacity gain at moderate SNR with a fixed number of cooperating antennas. We show that up to a lower bound to an SNR threshold, a cooperative system performs at least as well as a MIMO system with isotropic inputs; whereas beyond an upper bound to the SNR threshold, the cooperative system is limited by its coordination costs, and the capacity is strictly less than that of a MIMO orthogonal channel. The SNR threshold depends on the network geometry (the power gain g between the source and relay) and the number of cooperating antennas M; when the relay is close to the source (g [unk] 1), the SNR threshold lower and upper bounds are approximately equal. As the cooperating nodes are closer, i.e., as g increases, the MIMO-gain region extends to a higher SNR. Whereas for a populous cluster, i.e., when M is large, the coordination-limited region sets in at a lower SNR.